
1  

R PROGRAMMING LAB MANUAL                

(R20) 

LAKIREDDY BALI REDDY COLLEGE OF 

ENGINEERING 

(AUTONOMOUS) 

 

DEPARTMENT OF COMPUTER SCIENCE AND 

ENGINEERING 
 
 

 

 
 

 

 

 

 

 

 



2  

 

Vision of the Department 

Vision of the Department 

The Computer Science & Engineering aims at providing continuously stimulating educational environment 

to its students for attaining their professional goals and meet the global challenges. 

Mission of the Department 

 DM1: To develop a strong theoretical and practical background across the computer science 

discipline with an emphasis on problem solving. 

 DM2: To inculcate professional behaviour with strong ethical values, leadership qualities, 

innovative thinking and analytical abilities into the student. 

 DM3: Expose the students to cutting edge technologies which enhance their employability and 

knowledge. 

 DM4: Facilitate the faculty to keep track of latest developments in their research areas and 

encourage the faculty to foster the healthy interaction with industry. 

Program Educational Objectives (PEOs) 

 PEO1: Pursue higher education, entrepreneurship and research to compete at global level. 

 PEO2: Design and develop products innovatively in computer science and engineering and in other 

allied fields. 

 PEO3: Function effectively as individuals and as members of a team in the conduct of interdisciplinary 

projects; and even at all the levels with ethics and necessary attitude. 

 PEO4: Serve ever-changing needs of society with a pragmatic perception. 

 

PROGRAMME OUTCOMES (POs): 

 

PO 1 

Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex 

engineering problems.  

PO 2 

Problem analysis: Identify, formulate, review research literature, and analyze 

complex engineering problems reaching substantiated conclusions using first 

principles of mathematics, natural sciences, and engineering sciences.  

PO 3 

Design/development of solutions: Design solutions for complex engineering 

problems and design system components or processes that meet the specified needs 

with appropriate consideration for the public health and safety, and the cultural, 

societal, and environmental considerations. 

PO 4 

Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, 

and synthesis of the information to provide valid conclusions. 

PO 5 
Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 



3  

engineering activities with an understanding of the limitations.  

PO 6 

The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent 

responsibilities relevant to the professional engineering practice.  

PO 7 

Environment and sustainability: Understand the impact of the professional 

engineering solutions in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development.  

PO 8 
Ethics: Apply ethical principles and commit to professional ethics and responsibilities 

and norms of the engineering practice.  

PO 9 
Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings.  

PO 10 

Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend 

and write effective reports and design documentation, make effective presentations, 

and give and receive clear instructions.  

PO 11 

Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a 

member and leader in a team, to manage projects and in multidisciplinary 

environments. 

PO 12 

Life-long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of technological 

change 

 

PROGRAMME SPECIFIC OUTCOMES (PSOs): 

PSO 

1 

The ability to apply Software Engineering practices and strategies in software project 

development using open-source programming environment for the success of 

organization. 

PSO 

2 

The ability to design and develop computer programs in networking, web applications 

and IoT as per the society needs. 

PSO 

3 
To inculcate an ability to analyze, design and implement database applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4  

 

 

 

 

 

 

Week 1: 

1. a) Installing R and RStudio 
 

R is a programming language and software environment for statistical analysis, graphics 

representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the 

University of Auckland, New Zealand, and is currently developed by the R Development 

Core Team. 

This programming language was named R, based on the first letter of first name of the two R authors 

(Robert Gentleman and Ross Ihaka) 

R is often used for statistical computing and graphical presentation to analize and visualize 

data. 

Why Use R? 

 It is a great resource for data analysis, data visualization, data science and machine 

learning 

 It provides many statistical techniques (such as statistical tests, classification, 

clustering and data reduction) 

 It is easy to draw graphs in R, like pie charts, histograms, box plot, scatter plot, etc++ 

 It works on different platforms (Windows, Mac, Linux) 

 It is open-source and free 

 It has a large community support 

 It has many packages (libraries of functions) that can be used to solve different 

problems 

 

To Install R and R Packages 

 

1. Open an internet browser and go to www.r-project.org. 

2. Click the "download R" link in the middle of the page under "Getting Started." 

3. Select a CRAN location (a mirror site) and click the corresponding link. 

4. Click on the "Download R for WINDOWS" link at the top of the page. 

5. Click on the file containing the latest version of R under "Files." 

6. Save the .pkg file, double-click it to open, and follow the installation instructions. 

7. Now that R is installed, you need to download and install RStudio. 
 

To Install RStudio 

 

1. Go to www.rstudio.com and click on the "Download RStudio" button. 

2. Click on "Download RStudio Desktop." 

3. Click on the version recommended for your system, or the latest Mac version, save the 

.dmg file on your computer, double-click it to open, and then drag and drop it to your 

applications folder. 

http://www.r-project.org/
http://www.rstudio.com/


5  

1.b) Basic functionality of R, variable, data types in R 

 

 
If you type 5 + 5, and press enter, you will see that R outputs 10. 

Example 

5 + 5 

Output: 

[1] 10 

R Syntax 

Syntax 

To output text in R, use single or double quotes: 

Example  

"Hello World!" 

To output numbers, just type the number (without quotes): 

Example  

5 

10 

25 

To do simple calculations, add numbers together: 

Example  

5 + 5 

R Print 

Print 

Unlike many other programming languages, you can output code in R without using a print 
function: 

Example 

"Hello World!" 

However, R does have a print() function available if you want to use it. This might be 

useful if you are familiar with other programming languages, such as Python, which often 

uses the print() function to output code. 

Example  

print("Hello World!") 

And there are times you must use the print() function to output code, for example when working 

with for loops (which you will learn more about in a later chapter): 

Example  

for (x in 1:10) 

{ print(x) 

} 

 
 

Comments 

 

R Comments 

Comments can be used to explain R code, and to make it more readable. It can also be used to 

prevent execution when testing alternative code. 

Comments starts with a #. When executing the R-code, R will ignore anything that starts 

with #. 



6  

This example uses a comment before a line of code: 

Example 

# This is a comment 

"Hello World!" 

This example uses a comment at the end of a line of code: 

Example  

"Hello World!" # This is a comment 

Multiline Comments 

Unlike other programming languages, such as Java, there are no syntax in R for multiline 

comments. However, we can just insert a # for each line to create multiline comments: 

Example  
# This is a comment 

# written in 

# more than just one line 

"Hello World!" 

R Variables 

Creating Variables in R 

Variables are containers for storing data values. 
R does not have a command for declaring a variable. A variable is created the moment you 

first assign a value to it. To assign a value to a variable, use the <- sign. To output (or print) the 

variable value, just type the variable name: 

Example 

name <- "John" 

age <- 40 

name # output "John" age 

# output 40 

From the example above, name and age are variables, while "John" and 40 are values. 

In other programming language, it is common to use = as an assignment operator. In R, we can use 

both = and <- as assignment operators. 

However, <- is preferred in most cases because the = operator can be forbidden in some context in R. 

Print / Output Variables 

Compared to many other programming languages, you do not have to use a function to 

print/output variables in R. You can just type the name of the variable: 

Example  

name <- "John Doe" 

name # auto-print the value of the name variable 

However, R does have a print() function available if you want to use it. This might be useful if 

you are familiar with other programming languages, such as Python, which often use a print() 

function to output variables. 

Example  

name <- "John Doe" 

print(name) # print the value of the name variable 



7  

And there are times you must use the print() function to output code, for example when working 

with for loops (which you will learn more about in a later chapter): 

Example  

for (x in 1:10) 

{ print(x) 

} 

Output: 

[1] 1 

[1] 2 

[1] 3 

[1] 4 

[1] 5 

[1] 6 

[1] 7 

[1] 8 

[1] 9 

[1] 10 

Multiple Variables 

R allows you to assign the same value to multiple variables in one line: 

Example 

# Assign the same value to multiple variables in one line 

var1 <- var2 <- var3 <- "Orange" 

# Print variable values 

var1 

var2 

var3 

Variable Names 
A variable can have a short name (like x and y) or a more descriptive name (age, carname, 

total_volume). 

Rules for R variables are: 

 A variable name must start with a letter and can be a combination of letters, digits, 

period(.)and underscore(_). If it starts with period(.), it cannot be followed by a digit. 

 A variable name cannot start with a number or underscore (_) 

 Variable names are case-sensitive (age, Age and AGE are three different variables) 

 Reserved words cannot be used as variables (TRUE, FALSE, NULL, if...) 
# Legal variable 

names: myvar<- "John" 

my_var<- "John" 

myVar <- "John" 



8  

MYVAR <- "John" 

myvar2 <- "John" 

.myvar<- "John" 

# Illegal variable names: 

2myvar <- 

"John" my-var <- 

"John" my var <- 

"John" 

_my_var<- "John" 

my_v@ar<- 

"John" TRUE <- 

"John" 
 

Remember that variable names are case-sensitive! 

Data Types 

In programming, data type is an important concept. 

Variables can store data of different types, and different types can do different things. 

In R, variables do not need to be declared with any particular type, and can even change type 

after they have been set: 

Example  

my_var<- 30 # my_var is type of 

numeric my_var 

Output: 

[1] 30 

my_var<- "Sally" # my_var is now of type character (aka string) 

my_var 

Output

: 

[1] "Sally" 

R has a variety of data types and object classes. 

Basic Data Types 

Basic data types in R can be divided into the following types: 

 numeric - (10.5, 55, 787) 

 integer - (1L, 55L, 100L, where the letter "L" declares this as an integer) 

 complex - (9 + 3i, where "i" is the imaginary part) 

 character (a.k.a. string) - ("k", "R is exciting", "FALSE", "11.5") 

 logical (a.k.a. boolean) - (TRUE or FALSE) 

Use the class() function to check the data type of a variable: 

Example  

# numeric 

x <- 10.5 

class(x) 

Output: 

[1] "numeric" 



9  

# integer 

x <- 

1000L 

class(x) 

Output: 

[1] "integer" 

# complex 

x <- 9i + 3 

class(x) 

Output: 

[1] "complex" 

# character/string 

x <- "R is 

exciting" class(x) 

Output: 

[1] "Character" 

# logical/boolean 

x <- TRUE 

class(x) 

Output: 

[1] ”logical” 

R Numbers 

Numbers 

There are three number types in R: 
 numeric 

 integer 

 complex 

Variables of number types are created when you assign a value to them: 
Example  

x <- 10.5 # numeric 

y <- 10L    # integer 

z <- 1i # complex 

Output: 

> x 

[1] 10.5 

> y 

[1] 10 

> z 

[1] 0+1i 

Numeric 

A numeric data type is the most common type in R, and contains any number with or without a 

decimal, like: 10.5, 55, 787: 



1
0 

 

Example  

x <- 10.5 

y <- 55 

# Print values of x and y 

x 

y 

Output: 

> x 

[1] 10.5 

> y 

[1] 55 

# Print the class name of x and y 

class(x) 

class(y) 

Output: 

> class(x) 

[1] "numeric" 

> class(y) 

[1] "numeric" 

Integer 

Integers are numeric data without decimals. This is used when you are certain that you will 

never create a variable that should contain decimals. To create an integer variable, you must use 

the letter L after the integer value: 

Example  

x <- 

1000L y 

<- 55L 

# Print values of x and y 

x 

y 

Output: 

> x 

[1] 1000 

> y 

[1] 55 

# Print the class name of x and y 

class(x) 

class(y) 

Output: 



1
1 

 

> class(x) 

[1] "integer" 

> class(y) 

[1] "integer" 

Complex 

A complex number is written with an "i" as the imaginary part: 

Example  

x <- 3+5i 

y <- 5i 

# Print values of x and y 

x 

y 

Output: 

> x 

[1] 3+5i 

> y 

[1] 0+5i 

# Print the class name of x and y 

class(x) 

class(y) 

Output: 

>class(x) 

[1] "complex" 

> class(y) 

[1] "complex" 

Type Conversion 

You can convert from one type to another with the following functions: 
 as.numeric() 

 as.integer() 

 as.complex() 

Example  

x <- 1L # 

integer y <- 2 # 

numeric 

# convert from integer to numeric: 

a <- as.numeric(x) 

# convert from numeric to integer: 

b <- as.integer(y) 

# print values of x and y 

x 



1
2 

 

y 

# print the class name of a and b 

class(a) 

class(b) 

Output: 

print values of x and y 

> x 

[1] 1 

> y 

[1] 2 

# print the class name of a and b 

> class(a) 

[1] "numeric" 

> class(b) 

[1] "integer" 



10  

Week 2: 

2(a) Implement R script to show the usage of various operators available in R language. 

R Script: 

a=40 

b=20 

print("Arthimetic Operators") 

print(paste("addition=",(a+b))) 

print(paste("subtraction =",a-b)) 

print(paste("multiplication=",a*b)) 

print(paste("division of numbers",a/b)) 

print(paste("modulo of numbers",a%%b)) 

print(paste("Quotient of number",a%/%b)) 

print(paste("power of number=",a^b)) 

print("Relational Operators") 

print(paste("Checks Greater:",a>b)) 

print(paste("Checks lessthan:",a<b)) 

print(paste("Checks equal to:",a==b)) 

print(paste("Checks Greater or equal to:",a>=b)) 

print(paste("Checks less than or equal to:",a<=b)) 

print(paste("Checks not equal or not:",a!=b)) 

print("Logical operators") 

print(paste("And operation",a&b)) 

print(paste("OR operation",a|b)) 

print(paste("NOT operation of a",!a)) 

print(paste("NOT operation of b",!b)) 

print(paste("Logical And 

operation",a&&b)) print(paste("Logical OR 

operation",a||b)) print("Miscellaneous 

Operators") print("Colon operator") 

print(2:8) 



11  

Output: 

[1] "Arthimetic Operators" 

[1] "addition= 60" 

[1] "subtraction = 20" 

[1] "multiplication= 800" 

[1] "division of numbers 2" 

[1] "modulo of numbers 0" 

[1] "Quotient of number 2" 

[1] "power of number= 1.099511627776e+32" 

[1] "Relational Operators" 

[1] "Checks Greater: TRUE" 

[1] "Checks lessthan: FALSE" 

[1] "Checks equal to: FALSE" 

[1] "Checks Greater or equal to: TRUE" 

[1] "Checks less than or equal to: FALSE" 

[1] "Checks not equal or not: TRUE" 

[1] "Logical operators" 

[1] "And operation TRUE" 

[1] "OR operation TRUE" 

[1] "NOT operation of a FALSE" 

[1] "NOT operation of b FALSE" 

[1] "Logical And operation TRUE" 

[1] "Logical OR operation TRUE" 

[1] "Miscellaneous Operators" 

[1] "Colon operator" 

[1] 2 3 4 5 6 7 8 

2( b) Implement R script to read person‘s age from keyboard and display whether he is 

eligible for voting or not. 

 

age = readline(prompt="Enter the Age: ") 

age = as.integer(age) 



12  

readline() 

if(age>=18){ 

print(paste("Eligible to vote”, age)) 

}else{ 

print(paste("Not Eligible to vote”, age)) 

} 

Output: 

Enter the Age: 21 

[1] "Eligible to vote 21" 

Enter the Age: 17 

[1] "Not Eligible to vote 17" 

2(c) Implement R script to find biggest number between two numbers. 

# To Implement R script to find biggest between two numbers 

a = as.integer(readline(prompt = "Enter the Number 1: ")) 

b = as.integer(readline(prompt = "Enter the Number 2: ")) 

if(a>b) 

{ 

sprintf("a value %d is big", a) 

}else 

{ 

sprintf(" value %d is big", b) 

} 

Output: 

Enter the Number 1: 10 

Enter the Number 2: 5 

[1] "a value 10 is big" 

2(d) Implement R script to check the given year is leap year or not. 

ALGORITHM 

STEP 1: prompting appropriate messages to the user 

STEP 2: take user input using into variables year 

STEP 3: check if year is exactly divisible by 4,100,400 gives a remainder 

of 0 

STEP 4: if remainder is a non-zero print year is not a leap year. 

STEP 5: if remainder is zero print year is a leap year. 



13  

Enter a year: 1900 

[1] "1900 is not a leap year" 
 

 
Enter a year: 2000 

[1] "2000 is a leap year" 

# Program to check if the input year is a leap year or not 

year = as.integer(readline(prompt ="Enter a year: ")) 

if((year %% 4) == 0) { 

if((year %% 100) == 0) { 

if((year %% 400) == 0) { 

print(paste(year," is a Leap Year")) 

} else { 

print(paste(year," is not a Leap Year")) 

} 

} else { 

print(paste(year," is a Leap Year")) 

} 

} else { 

print(paste(year," is not a Leap Year")) 

} 

# Program to check if the input year is a leap year or not 

year = as.integer(readline(prompt ="Enter a year: ")) 

if((year %% 4) == 0 & (year %% 100) == 0 & (year %% 400) == 0 ) { 

print(paste(year," is a Leap Year")) 

} else { 

print(paste(year," is not a Leap Year")) 

} 

Output: 
 



14  

Week-3 

3(a) Implement R Script to create a list. 

Lists are the R objects which contain elements of different types like − numbers, strings, 

vectors and another list inside it. A list can also contain a matrix or a function as its elements. 

List is created using list() function. 

Creating a List 

Following is an example to create a list containing strings, numbers, vectors and a logical 

values. 

# Create a list containing strings, numbers, vectors and logical values 

list_data <- list("Red","Green",c(21,32,11), TRUE, 51.23, 119.1) 

print(list_data) 
Output: 

print(list_data) 

[[1]] 

[1] 

"Red" 

[[2]] 

[1] "Green" 

[[3]] 

[1] 21 32 11 

[[4]] 

[1] TRU

E [[5]] 

[1] 51.23 

[[6]] 

[1] 119.1 

3(b) Implement R Script to access elements in the list. 

Giving a name to list elements 

There are only three steps to print the list data corresponding to the name: 
1. Creating a list. 

2. Assign a name to the list elements with the help of names() function. 

3. Print the list data. 

Example: 1 

# Create a list containing a vector, a matrix and a list. 

list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow = 2),list("green",12.3)) 

# Give names to the elements in the list. 

names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list") 

# Show the list. 

print(list_data) 



15  

Output: 

 

print(list_data) 

$`1st Quarter` 

[1] "Jan" "Feb" "Mar" 

$A_Matrix 

[,1] [,2] [,3] 

[1,] 3 5   -2 

[2,] 9 1 8 

 

$`A Inner list` 

$`A Inner list`[[1]] 

[1] "green" 

 

$`A Inner list`[[2]] 

[1] 12.3 

Accessing List Elements 

 Elements of the list can be accessed by the index of the element in the list. In case of 

named lists it can also be accessed using the names. 

Example:2 

# Create a list containing a vector, a matrix and a list. 

list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow = 2), list("green",12.3)) 

 

# Give names to the elements in the list. 

names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list") 

 

# Access the first element of the list. 

print(list_data[1]) 

 

# Access the thrid element. As it is also a list, all its elements will be printed. 

print(list_data[3]) 

 

# Access the list element using the name of the element. 

print(list_data$A_Matrix) 
Output: 

print(list_data[1]) 

$`1st Quarter` 

[1] "Jan" "Feb" "Mar" 

# Access the third element. As it is also a list, all its elements will be printed. 

print(list_data[3]) 

$`A Inner list` 

$`A Inner list`[[1]] 

[1] "green" 



16  

$`A Inner 

list`[[2]] [1] 12.3 

# Access the list element using the name of the element. 

print(list_data$A_Matrix) 

[,1] [,2] [,3] 

[1,]   3    5 -2 

[2,] 9 1 8 

3(c) Implement R Script to merge two or more 

lists. Implement R Script to perform matrix 

operation. 

Implement R Script to merge two or more lists. 

Merging Lists 

You can merge many lists into one list by placing all the lists inside one list() function. 

# Create two lists. 

list1 <- list(1,2,3) 

list2 <- list("Sun","Mon","Tue") 

# Merge the two lists. 

merged.list <- c(list1,list2) 

 

# Print the merged list. 

print(merged.list) 
Output: 

print(merged.list) 

[[1]] 

[1] 1 

[[2]] 

[1] 2 

[[3]] 

[1] 3 

[[4]] 

[1] 

"Sun" 

[[5]] 

[1] "Mon" 

[[6]] 

[1] "Tue" 



17  

Implement R Script to perform matrix operation. 

R Matrix 

In R, a two-dimensional rectangular data set is known as a matrix. A matrix is created with the 

help of the vector input to the matrix function. On R matrices, we can perform addition, 

subtraction, multiplication, and division operation. 

In the R matrix, elements are arranged in a fixed number of rows and columns. The matrix 

elements are the real numbers. 
A Matrix is created using the matrix() function. 

Syntax 

matrix(data, nrow, ncol, byrow, dimnames)  

Following is the description of the parameters used − 

 data is the input vector which becomes the data elements of the matrix. 

 nrow is the number of rows to be created. 

 ncol is the number of columns to be created. 

 byrow is a logical clue. If TRUE then the input vector elements are arranged by row. 

 dimname is the names assigned to the rows and columns. 

 

Example 

#Arranging elements sequentially by row. 

P <- matrix(c(5:16), nrow = 4, byrow = 

TRUE) print(P) 

# Arranging elements sequentially by 

column. Q <- matrix(c(3:14), nrow = 4, byrow 

= FALSE) print(Q) 

# Defining the column and row names. 

row_names = c("row1", "row2", "row3", "row4") 

col_names = c("col1", "col2", "col3") 

R <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(row_names, col_names)) 

print(R) 

Output: 

print(P) 

[,1] [,2] [,3] 
 

[1,] 5 6 7 

[2,] 8 9 10 

[3,] 11 12 13 

[4,] 14 15 16 



18  

print(Q) 

[,1] [,2] [,3] 
 

[1,] 3 7 11 

[2,] 4 8 12 

[3,] 5 9 13 

[4,] 6 10 14 

print(R) 

col1 col2 col3 
 

row1 3 4 5 

row2 6 7 8 

row3 9 10 11 

row4 12 13 14 

 

 
Accessing Elements of a Matrix 

Elements of a matrix can be accessed by using the column and row index of the element. # 

Define the column and row names. 

rownames = c("row1", "row2", "row3", "row4") 

colnames = c("col1", "col2", "col3") 

# Create the matrix. Arranging elements sequentially by row. 

P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames)) 

print(P) 

# Access the element at 3rd column and 1st row. 

print(P[1,3]) 

# Access the element at 2nd column and 4th row. 

print(P[4,2]) 

# Access only the 2nd row. 

print(P[2,]) 

# Access only the 3rd column. 

print(P[,3]) 

Output: 

print(P) 



19  

col1 col2 col3 
 

row1 3 4 5 

row2 6 7 8 

row3 9 10 11 

row4 12 13 14 

print(P[1,3]) 

[1] 5 

print(P[4,2]) 

[1] 13 

print(P[2,]) 

col1 col2 

col3 

6 7   8 

print(P[,3]) 

row1 row2 row3 row4 

5 8 11 14 

Matrix operations 

In R, we can perform the mathematical operations on a matrix such as addition, subtraction, 

multiplication, etc. 
R <- matrix(c(5:16), nrow = 

4,ncol=3) S <- matrix(c(1:12), nrow 

= 4,ncol=3) # Display two matrices 

R and S print(R) 

print(S) 

#Addition 

sum<-R+S 

print(sum) 

#Subtraction 

sub<-R-S 

print(sub) 

#Multiplicatio

n mul<-R*S 

print(mul) 



20  

#Divisio

n div<-

R/S 

print(div) 

Output: 

print(R) 

[,1] [,2] [,3] 
 

[1,] 5 9 13 

[2,] 6 10 14 

[3,] 7 11 15 

[4,] 8 12 16 

print(S) 

[,1] [,2] [,3] 
 

[1,] 1 5 9 

[2,] 2 6 10 

[3,] 3 7 11 

[4,] 4 8 12 

sum<-

R+S 

print(sum

) 

[,1] [,2] [,3] 
 

[1,] 6 14 22 

[2,] 8 16 24 

[3,] 10 18 26 

[4,] 12 20 28 

sub<-R-S 

print(sub) 

[,1] [,2] [,3] 
 

[1,] 4 4 4 

[2,] 4 4 4 

[3,] 4 4 4 



20  

[4,] 4 4 4 

mul<-R*S 



21  

print(mul) 

[,1] [,2] [,3] 
 

[1,] 5 45 117 

[2,] 12 60 140 

[3,] 21 77 165 

[4,] 32 96 192 

div<-R/S 

print(div) 

[,1] [,2] [,3] 

[1,] 5.000000 1.800000 1.444444 

[2,] 3.000000 1.666667 1.400000 

[3,] 2.333333 1.571429 1.363636 

[4,] 2.000000 1.500000 1.333333 



22  

Week-4 

4(a) Implement R script to perform various operations on vectors. 

 In R, a sequence of elements which share the same data type is known as vector. 

 A vector supports logical, integer, double, character, complex, or raw data type. 

 The elements which are contained in vector known as components of the vector. 

 We can check the type of vector with the help of the typeof() function. 

 
The length is an important property of a vector. A vector length is basically the number of elements in 

the vector, and it is calculated with the help of the length() function. 

 
Vector is classified into two parts, i.e., Atomic vectors and Lists. They have three common properties, 

i.e., function type, function length, and attribute function. 

 
How to create a vector in R? 

 

 In R, we use c() function to create a vector. This function returns a one-dimensional 

array or simply vector. 

 The c() function is a generic function which combines its argument. All arguments are 

restricted with a common data type which is the type of the returned value. 

 

There are various other ways to create a vector in R, which are as follows: 

 
1) Using the colon(:) operator 

 

We can create a vector with the help of the colon operator. There is the following syntax to use 

colon operator: 

 
1. z<-x:y 

 

This operator creates a vector with elements from x to y and assigns it to z. 

 

Example: 

 
A <- 4: -10 

A 

 

Output 
 

[1] 4 3   2   1   0   -1   -2   -3   -4 -5   -6   -7   -8   -9   -10  

2) Using the seq() function 

 

In R, we can create a vector with the help of the seq() function. A sequence function creates a 

sequence of elements as a vector. The seq() function is used in two ways, i.e., by setting step 

size with ?by' parameter or specifying the length of the vector with the 'length.out' feature. 



23  

Example  

numbers <- seq(from = 0, to = 100, by = 

20) numbers 

Output: 

[1] 0 20 40  60 80 100 

Note: The seq() function has three parameters: from is where the sequence starts, 

to is where the sequence stops, and by is the interval of the sequence. 

Atomic vectors in R 

 

In R, there are four types of atomic vectors. Atomic vectors play an important role in Data 

Science. Atomic vectors are created with the help of c() function. These atomic vectors are as 

follows: 

 

Example 

# Vector of strings 

fruits <- c("banana", "apple", "orange") 

# Print fruits 

fruits 

Output: 

[1] "banana" "apple" "orange" 

 
In this example, we create a vector that combines numerical values: 

 

Example  

# Vector of numerical values 

numbers <- c(1, 2, 3) 

# Print numbers 

numbers 

Output: 

[1] 1 2 3 

To create a vector with numerical values in a sequence, use the : operator: 

Example  

# Vector with numerical values in a sequence 

numbers <- 1:10 

numbers 

Output:[1] 1 2 3 4 5 6 7 8 9 10 

Atomic vectors in R 

 

In R, there are four types of atomic vectors. Atomic vectors play an important role in Data 

Science. Atomic vectors are created with the help of c() function. These atomic vectors are as 

follows: 



24  

1. Numeric vector 

 

The decimal values are known as numeric data types in R. If we assign a decimal value to any 

variable d, then this d variable will become a numeric type. A vector which contains numeric 

elements is known as a numeric vector. 

 

Example: 

d<-45.5 
num_vec<-c(10.1, 10.2, 33.2) 

d 
num_vec 

class(d) 
class(num_vec) 

Output: 

[1] 10.1 10.2 33.2 

[1] "numeric" 

[1] "numeric" 
 

2. Integer vector 

 

A non-fraction numeric value is known as integer data. This integer data is represented by "Int." 

The Int size is 2 bytes and long Int size of 4 bytes. There is two way to assign an integer value 

to a variable, i.e., by using as.integer() function and appending of L to the value. 

 

A vector which contains integer elements is known as an integer vector. 

 

Example: 

d<-as.integer(5) 
e<-5L 

int_vec<-c(1,2,3,4,5) 
int_vec<-as.integer(int_vec) 

int_vec1<-c(1L,2L,3L,4L,5L) 
class(d) 

class(e) 
class(int_vec) 

class(int_vec1) 
Output: 

[1] "integer" 

[1] "integer" 

[1] "integer" 

[1] "integer" 



25  

3. Character vector 

A character is held as a one-byte integer in memory. In R, there are two different ways 

to create a character data type value, i.e., using as.character() function and by typing string 

between double quotes("") or single quotes(''). 

 

A vector which contains character elements is known as an integer vector. 

Example: 

d<-'shubham' 
e<-"Arpita" 

f<-65 
f<-as.character(f) 

d 
e 

f 
char_vec<-c(1,2,3,4,5) 

char_vec<-as.character(char_vec) 
char_vec1<-c("shubham","arpita","nishka","vaishali") 

char_vec 
class(d) 

class(e) 
class(f) 

class(char_vec) 

class(char_vec1) 

Output: 

> d 

[1] "shubham" 

> e 

[1] "Arpita" 

> f 

[1] "65" 

> char_vec 

[1] "1" "2" "3" "4" "5" 

> class(d) 

[1] "character" 

> class(e) 

[1] "character" 

> class(f) 



26  

[1] 1.0 1.6 2.2 2.8 3.4 4.0 

[1] 1.6 

[1] "character" 

> class(char_vec) 

[1] "character" 

> class(char_vec1) 

[1] "character" 
 

Accessing elements of vectors 

 

We can access the elements of a vector with the help of vector indexing. Indexing denotes the 

position where the value in a vector is stored. Indexing will be performed with the help of 

integer, character, or logic. 

 
1) Indexing with integer vector 

 

On integer vector, indexing is performed in the same way as we have applied in C, C++, and 

java. There is only one difference, i.e., in C, C++, and java the indexing starts from 0, but in R, 

the indexing starts from 1. Like other programming languages, we perform indexing by 

specifying an integer value in square braces [] next to our vector. 

 

Example: 

 
seq_vec<-seq(1,4,length.out=6) 

seq_vec 
 

seq_vec[2] 

 

Output 
 

2) Indexing with a character vector 

 

In character vector indexing, we assign a unique key to each element of the vector. These keys 

are uniquely defined as each element and can be accessed very easily. Let's see an example to 

understand how it is performed. 

 

Example: 

 
char_vec<-c("shubham"=22,"arpita"=23,"vaishali"=25) 

char_vec 
 

char_vec["arpita"] 

 

Output 
 

shubham arpita vaishali  



27  

 

3) Indexing with a logical vector 

 

In logical indexing, it returns the values of those positions whose corresponding position has a 

logical vector TRUE. Let see an example to understand how it is performed on vectors. 

 

Example: 

 
a<-c(1,2,3,4,5,6) 

a[c(TRUE, FALSE,TRUE,TRUE,FALSE,TRUE)] 

 

Output 
 

[1] 1 3 4 6  

 

Vector Operation 

 

In R, there are various operation which is performed on the vector. We can add, subtract, 

multiply or divide two or more vectors from each other. 

 
1) Combining vectors 

 

The c() function is not only used to create a vector, but also it is also used to combine two 

vectors. By combining one or more vectors, it forms a new vector which contains all the 

elements of each vector. Let see an example to see how c() function combines the vectors. 

 

Example: 

 

p <- c(1,2,3,5,7,8) 

q <- c("subbu","raju","raju","sankar","rajesh","ramesh") 

r <- c(p,q) 

r 

Output: 
[1] "1" "2" "3" "5" "7" "8" "subbu" "raju" "raju" "sankar" "rajesh" "ramesh" 

 

 
2) Arithmetic operations 

 

We can perform all the arithmetic operation on vectors. The arithmetic operations are 

performed member-by-member on vectors. We can add, subtract, multiply, or divide two 

vectors. Let see an example to understand how arithmetic operations are performed on vectors. 

 

Example: 

 
a<-c(1,3,5,7) 

22 23 25 
arpita 

23 



28  

b<-c(2,4,6,8) 

print("Addition of 

a+b") a+b 

print("Subtraction of a-b") 

a-b 

print("Division of 

a/b") a/b 

print("Modolus of 

a%%b") a%%b 

Output: 

[1] "Addition of a+b" 

> a+b 

[1] 3 7 11 15 

[1] "Subtraction of a-b" 

> a-b 

[1] -1 -1 -1 -1 

[1] "Division of a/b" 

> a/b 

[1] 0.5000000 0.7500000 0.8333333 0.8750000 

[1] "Modolus of a%%b" 

> a%%b 

[1] 1 3 5 

7 

Vector Element Recycling 

If we apply arithmetic operations to two vectors of unequal length, then the elements of the 

shorter vector are recycled to complete the operations. 

v1 <- c(3,8,4,5,0,11) 

v2 <- c(4,11) 

# V2 becomes c(4,11,4,11,4,11) 

add.result <- v1+v2 

print(add.result) 

sub.result <- v1-v2 

print(sub.result) 

Output: 

[1] 7 19 8 16 4 22 



29  

[1] -1 -3 0 -6 -4 0 

Vector Element Sorting 

Elements in a vector can be sorted using the sort() function. 

v <- c(3,8,4,5,0,11, -9, 304) 

# Sort the elements of the vector. 

sort.result <- sort(v) 

print(sort.result) 

 

# Sort the elements in the reverse order. 

revsort.result <- sort(v, decreasing = TRUE) 

print(revsort.result) 

 

# Sorting character vectors. 

v <- c("Red","Blue","yellow","violet") 

sort.result <- sort(v) 

print(sort.result) 

 

# Sorting character vectors in reverse order. 

revsort.result <- sort(v, decreasing = TRUE) 

print(revsort.result) 

 

Output: 

print(sort.result) 

[1] -9 0   3   4   5   8 11 304 

 

print(revsort.result) 

[1] 304 11 8   5   4   3   0 -9 

 

print(sort.result) 

[1] "Blue" "Red" "violet" "yellow" 

 

print(revsort.result) 

[1] "yellow" "violet" "Red" "Blue" 

 

4(b) Implement R script for finding the sum and average of given numbers using arrays. 

 

thisarray <- c(1:24) 

multiarray <- array(thisarray,dim = c(4,3,2)) 

print(multiarray) 

 

print("sum of array elements:") 

print(sum(multiarray)) 

 

print("Length of the array:") 

len <-length(multiarray) 

len 

 

print("Average of array elements:") 



30  

print(sum(multiarray)/len) 

 

Output: 

[1] "sum of array elements:" 

[1] 300 

[1] "Length of the array:" 

[1] 24 

[1] "Average of array elements:" 

[1] 12.5 

 
 

4(c) Implement R script to display elements of list in reverse order. 

 

list1 <-c(1:24) 

print(list1) 

print(Elements in Reverse Order") 

rev.default(list1) 

 

Output: 

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

[1] "Elements in Reverse Order" 

[1] 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

 

4(d) Implement R script to find the minimum and maximum elements in the array. 

nums = c(10, 20, 30, 40, 50, 60) 

array1 <-array(nums) 

print("The elements in the Array:") 

array1 

print(paste("Maximum value :",max(nums))) 

print(paste("Minimum value :",min(nums))) 

 

Output: 

[1] "The elements in the Array:" 

[1] 10 20 30 40 50 60 

[1] "Maximum value : 60" 

[1] "Minimum value : 10" 



31  

Week-5: 
5(a) a) Implement R script to perform various operations on matrices. 

Matrix operations 

In R, we can perform the mathematical operations on a matrix such as addition, subtraction, 

multiplication, etc. 
R <- matrix(c(5:16), nrow = 

4,ncol=3) S <- matrix(c(1:12), nrow 

= 4,ncol=3) # Display two matrices 

R and S print(R) 

print(S) 

#Addition 

sum<-R+S 

print(sum) 

#Subtraction 

sub<-R-S 

print(sub) 

#Multiplicatio

n mul<-R*S 

print(mul) 

#Division 

div<-R/S 

print(div) 

Output: 

print(R) 

[,1] [,2] [,3] 
 

[1,] 5 9 13 

[2,] 6 10 14 

[3,] 7 11 15 

[4,] 8 12 16 

print(S) 

[,1] [,2] [,3] 

[1,]   1    5 9 



32  

[2,] 2 6 10 

[3,] 3 7 11 

[4,] 4 8 12 
 

sum<-

R+S 

print(sum

) 

[,1] [,2] [,3] 
 

[1,] 6 14 22 

[2,] 8 16 24 

[3,] 10 18 26 

[4,] 12 20 28 

sub<-R-S 

print(sub) 

[,1] [,2] [,3] 
 

[1,] 4 4 4 

[2,] 4 4 4 

[3,] 4 4 4 

[4,] 4 4 4 

mul<-R*S 

print(mul) 

[,1] [,2] [,3] 
 

[1,] 5 45 117 

[2,] 12 60 140 

[3,] 21 77 165 

[4,] 32 96 192 

div<-R/S 

print(div) 

[,1] [,2] [,3] 

[1,] 5.000000 1.800000 1.444444 

[2,] 3.000000 1.666667 1.400000 

[3,] 2.333333 1.571429 1.363636 



33  

[4,] 2.000000 1.500000 1.333333 



34  

5(b) Implement R script to extract the data from dataframes. 
exam_data = data.frame( 

name = c('Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 

'Jonas'), 

score = c(12.5, 9, 16.5, 12, 9, 20, 14.5, 13.5, 8, 19), 

attempts = c(1, 3, 2, 3, 2, 3, 1, 1, 2, 1), 

qualify = c('yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes') 

print("Original dataframe:") 

print(exam_data) 

print("Extract 3rd and 5th rows with 1st and 3rd columns :") 

result = exam_data[c(3,5),c(1,3)] 

print(result) 

 

Output: 

print(exam_data) 
name score attempts qualify 

1 Anastasia 12.5 1 yes 

2 Dima 9.0 3 no 

3 Katherine 16.5 2 yes 

4 James 12.0 3 no 

5 Emily 9.0 2 no 

6 Michael 20.0 3 yes 

7 Matthew 14.5 1 yes 

8 Laura 13.5 1 no 

9 Kevin 8.0 2 no 
10Jonas 19.0 1 yes 

[1] "Extract 3rd and 5th rows with 1st and 3rd columns:" 

name attempts 

3 Katherine 2 

5 Emily 2 

 

5(c) Write R script to display file contents. 

 Reading a text file 

One of the important formats to store a file is in a text file. R provides various methods that 

one can read data from a text file. 

 read.delim(): This method is used for reading “tab-separated value” files (“.txt”). 

By default, point (“.”) is used as decimal points. 

 

read.delim(file, header = TRUE, sep = “\t”, dec = “.”, …) 

file: the path to the file containing the data to be read into R. 

header: a logical value. If TRUE, read.delim() assumes that your file has a header row, s o row 

1 is the name of each column. If that’s not the case, you can add the argument header 



35  

= FALSE. 

sep: the field separator character. “\t” is used for a tab-delimited file. 

dec: the character used in the file for decimal points. 

 read.delim2(): This method is used for reading “tab-separated value” files (“.txt”). 

By default, point (“,”) is used as decimal points. 

 
read.delim2(file, header = TRUE, sep = “\t”, dec = “,”, …) 

 

 
 file.choose(): In R it’s also possible to choose a file interactively using the functio 

n file.choose(), and if you’re a beginner in R programming then this method is very 

useful for you. 

 read_tsv(): This method is also used for to read a tab separated (“\t”) values by 

using the help of readr package. 

 

read_tsv(file, col_names = TRUE) 

file: the path to the file containing the data to be read into R. 

col_names: Either TRUE, FALSE, or a character vector specifying column names. If 

TRUE, the first row of the input will be used as the column names. 

 
Example:1 

# R program reading a text file 

# Read a text file using read.delim() 

myData= read.delim("C:/Users/rajen/OneDrive/Documents/sample.txt", header = FALSE) 

print(myData) 

 

Output: 

1 Welcome to R Programming Lab 

 

Example:2 

# R program reading a text file 

# Read a text file using read.delim2 

myData = read.delim2("C:/Users/rajen/OneDrive/Documents/sample.txt", header = FALSE) 

print(myData) 

Output: 

1 Welcome to R Programming Lab 

 

Example:3 

# R program reading a text file using file.choose() 

myFile = read.delim(file.choose(), header = FALSE) 

# If you use the code above in RStudio 

# you will be asked to choose a file 

print(myFile) 

Output: 

1 Welcome to R Programming Lab 

 

Example:4 

# R program to read text file 

# using readr package 



36  

# Import the readr library 

install.packages("readr") 

library(readr) 

# Use read_tsv() to read text file 

myData = read_tsv("C:/Users/rajen/OneDrive/Documents/sample.txt", 

col_names = FALSE) 

print(myData) 

Output: 

A tibble: 1 x 1 

X1 

<chr> 

1 Welcome to R Programming Lab 

 

5(d) Write R script to copy file contents from one to another. 

 

library(readr) 

file1=read_file("C:/Users/rajen/OneDrive/Documents/sample.txt") 

print(file1) 

write_file(file1,"file2.txt") 

d=read_file("file2.txt") 

print(d) 

 

Output: 

[1] "Welcome to R Programming Lab" 



37  

Week-6 

6(a) Write an R script to find basic descriptive statistics using summary, str, quartile 

function on mtcars & cars datasets. 

What is Descriptive Statistics? 

 Descriptive statistics is the branch of statistics that focuses on describing and gaining 

more insight into the data in its present state. 

 It deals with what the data in its current state means. It makes the data easier to 

understand and also gives us knowledge about the data which is necessary to perform 

further analysis. 

 Average measures like mean, median, mode, etc. are a good example of descriptive 

statistics. 

Descriptive Statistics in R 

R programming language provides us with lots of simple yet effective functions to perform 

descriptive statistics and gain more knowledge about our data. Summarizing the data, 

calculating average measures, finding out cumulative measures, summarizing rows/columns 

of data structures, etc. everything is possible with trivial commands. Let’s start simple with 

the summarizing functions str() and summary(). 

Summarizing your Data 

R provides two very simple functions that can instantly summarize our data for us. These are 

the str() and the summary() functions. 

 

str() function 

The str() function takes a single object as an argument and compactly shows us 
the structure of the input object. It shows us details like length, data type, names and other 

specifics about the components of the object. 
 

# shows us the structure of the input object. 

str(mtcars) 

Output: 

 

str(mtcars) 

 

'data.frame': 32 obs. of 11 variables: 

$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ... 

$ cyl : num 6 6 4 6 8 6 8 4 4 6 ... 

$ disp: num 160 160 108 258 360 ... 

$ hp : num 110 110 93 110 175 105 245 62 95 123 ... 

$ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ... 

$ wt : num 2.62 2.88 2.32 3.21 3.44 ... 

$ qsec: num 16.5 17 18.6 19.4 17 ... 

$ vs : num 0 0 1 1 0 1 0 1 1 1 ... 

$ am : num 1 1 1 0 0 0 0 0 0 0 ... 

$ gear: num 4 4 4 3 3 3 3 4 4 4 ... 

$ carb: num 4 4 1 1 2 1 4 2 2 4 ... 



38  

'data.frame': 50 obs. of 2 variables: 

$ speed: num 4 4 7 7 8 9 10 10 10 11 ... 

str(cars) 

Output: 

str(cars) 

 
  $ dist : num 2 10 4 22 16 10 18 26 34 17 ... 

 

summary() function: 

The summary() function also takes a single object as an argument. It then returns 

the averages measures like mean, median, minimum, maximum, 1st quantile, 3rd quantile, 

etc. for each component or variable in the object. Here is an example of the summary 

function in action. 

 

summary(mtcars) 

Output: 

summary(mtcars) 

mpg cyl disp hp drat wt qsec 
Min. :10.40   Min.   :4.000   Min.   : 71.1   Min. : 52.0   Min.   :2.760 Min.   :1.513   Min. 

:14.50 

1st Qu.:15.43  1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5 1st Qu.:3.080 1st Qu.:2.581 

1st Qu.:16.89 

Median :19.20  Median :6.000 Median :196.3 Median :123.0 Median :3.695 Median 

:3.325 Median :17.71 

Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7 Mean :3.597 Mean :3.217 

Mean :17.85 

3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0 3rd Qu.:3.920 3rd 

Qu.:3.610 3rd Qu.:18.90 

Max.  :33.90 Max. :8.000 Max. :472.0 Max. :335.0 Max. :4.930 Max. :5.424 

Max. :22.90 

vs am gear carb 

Min. :0.0000   Min.   :0.0000   Min.   :3.000   Min.   :1.000 

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000 

Median :0.0000 Median :0.0000   Median :4.000  Median :2.000 

Mean :0.4375 Mean :0.4062 Mean   :3.688   Mean   :2.812 

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000 

Max. :1.0000 Max. :1.0000 Max. :5.000 Max. :8.000 

 

summary(cars) 

Output: 

summary(cars) 

speed dist 

Min.   : 4.0 Min. : 2.00 

1st Qu.:12.0 1st Qu.: 26.00 

Median :15.0  Median : 36.00 

Mean :15.4 Mean : 42.98 

3rd Qu.:19.0 3rd Qu.: 56.00 

Max. :25.0 Max. :120.00 



39  

Getting the Average Measures 

R provides a number of functions that give us different average measures for given data. 

These average measures include: 
 

 Mean: The mean of a given set of numeric or logical values(it may be a vector or a 

row or column of any other data structure) can be easily found using 

the mean() function. 

 Median: Finding the median of a set of numeric or logical values is also very easy by 

using the median() function. 

 Standard deviation: The standard deviation of a set of numerical values can be 

found using the sd() function. 

 Variance: the var() function gives us the variance of a set of numeric or logical 

values. 

 Median Absolute Variance: The median absolute variance of a set of numeric or 

logical values can be found by using the mad() function. 

 Maximum: In a given set of numeric or logical values, we can use the max() function 

to find the maximum or the largest value in the set. 
Note: NA is considered to be the largest by the max() function unless its na.rm argument is set to 

TRUE. 

 Minimum: The min() function is a very handy way to find out the smallest value in a 

set of numeric values. 
Note: Like the max() function, the min() function considers NA to be the smallest unless na.rm is set 

to TRUE. 

 Sum: The sum of a set of numerical values can be found by simply using 

the sum() function. 

 Length: The length or the number of values in a set is given by the length() function. 

Example: 

mean(mtcars$mpg) 

median(mtcars$mpg) 

sd(mtcars$mpg) 

var(mtcars$mpg) 

mad(mtcars$mpg) 

max(mtcars$mpg, na.rm = TRUE) 

min(mtcars$mpg, na.rm = TRUE) 

sum(mtcars$mpg) 

length(mtcars$mpg) 

Output: 

mean(mtcars$mpg) 

[1] 20.09062 

> median(mtcars$mpg) 

[1] 19.2 

> sd(mtcars$mpg) 

[1] 6.026948 

> var(mtcars$mpg) 

[1] 36.3241 

> mad(mtcars$mpg) 

[1] 5.41149 

> max(mtcars$mpg, na.rm = TRUE) 



31
0 

 

[1] 33.9 

> min(mtcars$mpg, na.rm = TRUE) 

[1] 10.4 

> sum(mtcars$mpg) 

[1] 642.9 

> length(mtcars$mpg) 

[1] 32 

 

 

 

 

 

 

 
 

Quantile Function: 

 A quantile is nothing but a sample that is divided into equal groups or sizes. Due to 

this nature, the quantiles are also called as Fractiles. In the quantiles, the 25th 

percentile is called as lower quartile, 50th percentile is called as Median and the 75th 

Percentile is called as the upper quartile. 

 This is particularly useful when you’re doing exploratory analysis and reporting, 

especially if you’re analyzing data which may not be normally distributed. 

 We’re going to use the r quantile function; this utility is part of base R (so you don’t 

need to import any libraries) and can be adapted to generate a variety of “rank based” 

statistics about your sample. 

Quantile() function syntax 

 

The syntax of the Quantile() function in R is, 
quantile(x, probs = , na.rm = FALSE) 

Where, 
 X = the input vector or the values 

 Probs = probabilities of values between 0 and 1. 

 na.rm = removes the NA values. 

We’re going to use the r quantile function; this utility is part of base R (so you don’t need to 

import any libraries) and can be adapted to generate a variety of “rank based” statistics about 

your sample. 

Example: 

# quartile in R example 

test = c(9,9,8,9,10,9,3,5,6,8,9,10,11,12,13,11,10) 

# get quartile in r code (single line) 

quantile(test, prob=c(.25,.5,.75)) 

 

Output: 

quantile(test, prob=c(.25,.5,.75)) 

25% 50% 75% 

8 9 10 

 

You can also use the summary function to generate the same information. 

# quartile in R example - summary function 



40  

test = c(9,9,8,9,10,9,3,5,6,8,9,10,11,12,13,11,10) 

summary(test) 

 

Output: 

summary(test) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

3.000   8.000 9.000  8.941  10.000 13.000 

 

Quantile function using mtcars and cars dataset. 

 

quantile(mtcars$wt) 

 
Output: 

0% 
 

25% 50% 
 

75% 100% 

1.51300 2.58125   3.32500 3.61000 5.42400 

quantile(mtcars$mpg) 

Output: 
0% 25% 50% 75% 

 

 
100% 

10.400 15.425 19.200 22.800 33.900 

 

quantile(cars$speed) 

Output: 

0% 25% 50%   75%   100% 

4 12 15 19 25 

quantile(cars$speed,c(.2, .4, .8)) 

Output: 

20% 40% 80% 

11 14 20 

 
 

6(b) Write an R script to find subset of dataset by using subset(), aggregate() functions 

on iris 

dataset. 

 

Sub setting Datasets in R 

 R has powerful indexing features for accessing object elements. These features can be 

used to select and exclude variables and observations. 

 Whether you're comparing how different demographics respond to marketing 

campaigns, zooming in on a specific time frame, or pulling information about a select 

few products from the inventory, subsetting datasets enables you to extract useful 

observations in your dataset. 

 R is a great tool that makes subsetting data easy and intuitive. 

 The subset( ) function is the easiest way to select variables and observations. 

 Subsetting your data does not change the content of your data, but simply selects the 

portion most relevant to the goal you have in mind. In general, there are three ways to 

subset the rows and columns of your dataset—by index, by name, and by value. 



41  

Iris dataset 

 

 Iris dataset gives the measurements in centimetres of the variables sepal length and 

width and petal length and width, respectively, for 50 flowers from each of 3 species 

of iris. The species are Iris setosa, versicolor, and virginica. 

 In this picture You can see what are we dealing with and how exactly looks the 

variables (sepal length and width and petal length and width) we are measuring and the object 

itself: 
 

Format 

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepaal.Length, 

Sepal.Width, Petal.Length, Petal.Width, and Species. 

Here’s a little summary of what you can basically see in dataset iris: 

summary(iris) 

Output: 
Sepal.Length Sepal.Width Petal.Length Petal.Width Species 

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50 

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50 

Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50 

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199  

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800  

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500  

 

names(iris) 

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species" 

 

str(iris) 

'data.frame': 150 obs. of 5 variables: 

$ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... 

$ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... 

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... 

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... 

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... 

 

Let's take a look at the data itself. Let's see the first 5 rows of data for each class: 



42  

# Get first 5 rows of each subset 

subset(iris, Species == "setosa")[1:5,] 

 

Output: 

Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
1 5.1 3.5 1.4 0.2 setosa 

2 4.9 3.0 1.4 0.2 setosa 

3 4.7 3.2 1.3 0.2 setosa 

4 4.6 3.1 1.5 0.2 setosa 
5 5.0 3.6 1.4 0.2 setosa 

 
subset(iris, Species == "versicolor")[1:5,] 

Output: 
Sepal.Length Sepal.Width Petal.Length Petal.Width Species 

 

51 7.0 3.2 4.7 1.4 versicolor 

52 6.4 3.2 4.5 1.5 versicolor 

53 6.9 3.1 4.9 1.5 versicolor 

54 5.5 2.3 4.0 1.3 versicolor 

55 6.5 2.8 4.6 1.5 versicolor 

 

 
subset(iris, Species == "virginica")[1:5,] 

 

Output: 
Sepal.Length Sepal.Width Petal.Length Petal.Width Species 

 

101 6.3 3.3 6.0 2.5 virginica 

102 5.8 2.7 5.1 1.9 virginica 

103 7.1 3.0 5.9 2.1 virginica 

104 6.3 2.9 5.6 1.8 virginica 

105 6.5 3.0 5.8 2.2 virginica 

AGGREGATE() FUNCTION IN R 

 aggregate() Function in R Splits the data into subsets, computes summary 

statistics for each subsets and returns the result in a group by form. 

 aggregate() function is useful in performing all the aggregate operations like sum, 

count, mean, minimum and Maximum. 
 

Use aggregate() function to find summary statistics by group. 

 

Syntax for Aggregate() Function in R: 



43  

 
 

X an R object, mostly a data frame 

by a list of grouping elements, by which the subsets are grouped by 

FUN a function to compute the summary statistics 

simplify a logical indicating whether results should be simplified to a vector or matrix if possible 

drop a logical indicating whether to drop unused combinations of grouping values. 
 

Example: 

agg_mean = aggregate(iris[,1:4], by = list(iris$Species),FUN=mean,na.rm=TRUE) 

agg_mean 

the above code takes first 4 columns of iris data set and groups by “species” by computing 

the mean for each group, so the output will be 

Output: 

Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width 
1 setosa 5.006 3.428 1.462 0.246 

2 versicolor 5.936 2.770 4.260 1.326 
3 virginica 6.588 2.974 5.552 2.026 

 

Example for aggregate() function in R with sum: 

Let’s use the aggregate() function in R to create the sum of all the metrics across species and 

group by species. 
 

# Aggregate function in R with sum summary statistics 

agg_sum = aggregate(iris[,1:4],by=list(iris$Species),FUN=sum, na.rm=TRUE) 

agg_sum 

Output: 

Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width 
1 setosa 250.3 171.4 73.1 12.3 

2 versicolor 296.8 138.5 213.0 66.3 
3 virginica 329.4 148.7 277.6 101.3 

 

Example for aggregate() function in R with sum: 

Let’s use the aggregate() function in R to create the sum of all the metrics across species and 

group by species. 
 

# Aggregate function in R with sum summary statistics 

agg_sum = aggregate(iris[,1:4],by=list(iris$Species),FUN=sum, na.rm=TRUE) 

agg_sum 

 

Output: 

Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width 
1 setosa 250.3 171.4 73.1 12.3 

2 versicolor 296.8 138.5 213.0 66.3 
3 virginica 329.4 148.7 277.6 101.3 

 

Example for aggregate() function in R with count: 

# Aggregate function in R with count 
agg_count = aggregate(iris[,1:4],by=list(iris$Species),FUN=length) 

aggregate(x, by, FUN, …, simplify = TRUE, drop = TRUE) 



44  

agg_count 

 

the above code takes first 4 columns of iris data set and groups by “species” by computing 

the count for each group, so the output will be 

Output: 

Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width 
1 setosa 50 50 50 50 

2 versicolor 50 50 50 50 
3 virginica 50 50 50 50 

 

Example for aggregate() function in R with maximum: 

Let’s use the aggregate() function to create the maximum of all the metrics across species 

and group by species. 

 
# Aggregate function in R with maximum 

agg_max = aggregate(iris[,1:4],by=list(iris$Species),FUN=max, 

na.rm=TRUE) agg_max 

 

the above code takes first 4 columns of iris data set and groups by “species” by computing 

the max for each group, so the output will be 

Output: 

Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width 
1 setosa 5.8 4.4 1.9 0.6 

2 versicolor 7.0 3.4 5.1 1.8 
3 virginica 7.9 3.8 6.9 2.5 



45  

Week-7 

7(a) Reading different types of data sets (.txt, .csv) from Web or disk and writing in file 

in 

specific disk location. 

 

Reading data from txt or csv files 

 

The R base function read.table() is a general function that can be used to read a file in table 

format. The data will be imported as a data frame. 

Note that, depending on the format of your file, several variants of read.table() are available, 

including read.csv, read.csv2(), read.delim and read.delim2(). 

 
 read.csv(): for reading “comma separated value” files (“.csv”). 

 read.csv2(): variant used in countries that use a comma “,” as decimal point and a semicolon 

“;” as field separators. 

 read.delim(): for reading “tab-separated value” files (“.txt”). By default, point (“.”) is used 

as decimal points. 

 read.delim2(): for reading “tab-separated value” files (“.txt”). By default, comma (“,”) is 

used as decimal points. 

 

The simplified format of these functions are, as follows: 

 

# Read tabular data into R 

read.table(file, header = FALSE, sep = "", dec = ".") 

# Read "comma separated value" files (".csv") 

read.csv(file, header = TRUE, sep = ",", dec = ".", ...) 

# Or use read.csv2: variant used in countries that # use a comma as decimal point and a 

semicolon as field separator. 

read.csv2(file, header = TRUE, sep = ";", dec = ",", ...) 

# Read TAB delimited files 

read.delim(file, header = TRUE, sep = "\t", dec = ".", ...) read.delim2(file, header = TRUE, 

sep = "\t", dec = ",", ...) 

 
 file: the path to the file containing the data to be imported into R. 

 sep: the field separator character. “\t” is used for tab-delimited file. 

 header: logical value. If TRUE, read.table() assumes that your file has a header row, so row 

1 is the name of each column. If that’s not the case, you can add the argument header = 

FALSE. 

 dec: the character used in the file for decimal points. 

 

Reading a local file 
 

To import a local .txt or a .csv file, the syntax would be: 

# Read a txt file, named "mtcars.txt" 

my_data <- read.delim("mtcars.txt") 

# Read a csv file, named "mtcars.csv" 

my_data <- read.csv("mtcars.csv") 
 

 
 

Note: 



46  

The above R code, assumes that the file “mtcars.txt” or “mtcars.csv” is in your 

current working directory. To know your current working directory, type the 

function getwd() in R console. 

 It’s also possible to choose a file interactively using the function file.choose(), which I 

recommend if you’re a beginner in R programming: 

# Read a txt file 

my_data <- read.delim(file.choose()) 

# Read a csv file 

my_data <- read.csv(file.choose()) 
 

If you use the R code above in RStudio, you will be asked to choose a file. 

Reading a file from internet 

It’s possible to use the functions read.delim(), read.csv() and read.table() to import files from 

the web. 

my_data <- read.delim("http://www.sthda.com/upload/boxplot_format.txt") 

head(my_data) 

 

Here I am using weather data. 

 

Example-1: R program reading a .text file 

# Read a text file using read.delim() 

Data1 = read.delim("weather.txt", header = TRUE) 

print(Data1) 

Output: 

my_data 

outlook temperature humidity windy play 

1 overcast hot high FALSE yes 

2 overcast cool normal TRUE yes 

3 overcast mild high TRUE yes 

4 overcast hot normal FALSE yes 

5 rainy mild high FALSE yes 

6 rainy cool  normal FALSE  yes 

7 rainy cool normal TRUE   no 

8 rainy mild normal FALSE  yes 

9 rainy mild high TRUE no 

10 sunny hot high FALSE no 

11 sunny hot high TRUE   no 

12 sunny mild high FALSE no 

13 sunny cool normal FALSE yes 

14 sunny mild normal TRUE  yes 

 
 

Data2 <-read.table(“weather.txt”, header=TRUE, sep = "\t") 

Data2 

Output: 

 

Data2 

outlook temperature humidity windy play 

1 overcast hot FALSE yes 

http://www.sthda.com/upload/boxplot_format.txt


47  

2 overcast cool normal TRUE yes 

3 overcast mild high TRUE yes 

4 overcast hot normal FALSE yes 

5 rainy mild high FALSE yes 

6 rainy cool  normal FALSE  yes 

7 rainy cool normal TRUE   no 

8 rainy mild normal FALSE  yes 

9 rainy mild high TRUE no 

10 sunny hot high FALSE no 

11 sunny hot high TRUE   no 

12 sunny mild high FALSE no 

13 sunny cool normal FALSE yes 

14 sunny mild normal TRUE  yes 

 
 

Example-2: R program reading a .csv file 

Data3 <- read.csv(“weather.csv”, header=TRUE) 

Data3 

outlook temperature humidity windy play 

1 overcast hot high FALSE yes 

2 overcast cool normal TRUE yes 

3 overcast mild high TRUE yes 

4 overcast hot normal FALSE yes 

5 rainy mild high FALSE yes 

6 rainy cool  normal FALSE  yes 

7 rainy cool normal TRUE   no 

8 rainy mild normal FALSE  yes 

9 rainy mild high TRUE no 

10 sunny hot high FALSE no 

11 sunny hot high TRUE   no 

12 sunny mild high FALSE no 

13 sunny cool normal FALSE yes 

14 sunny mild normal TRUE  yes 

 

Data4 <-read.table(“weather.csv”, header=TRUE,sep=",") 

 

Data4 

outlook temperature humidity windy play 

1 overcast hot high FALSE yes 

2 overcast cool normal TRUE yes 

3 overcast mild high TRUE yes 

4 overcast hot normal FALSE yes 

5 rainy mild high FALSE yes 
6 rainy cool normal FALSE  yes 

7 rainy cool normal TRUE no 

8 rainy mild normal FALSE yes 

9 rainy mild high TRUE no 

10 sunny hot high FALSE no 

11 sunny hot high TRUE no 
12 sunny mild high FALSE no 



48  

13 sunny cool normal FALSE yes 

14 sunny mild normal TRUE  yes 

 
 

It’s also possible to choose a file interactively using the function file.choose() 

 
 

 To read .txt file 

data3 <-read.delim(file.choose(), header=TRUE) 

data3 

 

data4 <-read.table(file.choose(),header=TRUE, sep="\t") 

data4 

 

 To read .csv file 

 

data1 <- read.csv(file.choose(), header=TRUE) 

data1 

 

data2 <-read.table(file.choose(), header=TRUE,sep=",") 

data2 

 

Reading a file from internet 

It’s possible to use the functions read.delim(), read.csv() and read.table() to import files from 

the web. 

my_data <- read.delim("http://www.sthda.com/upload/boxplot_format.txt") 

head(my_data) 

 

Output: 

Nom variable Group 

1 IND1 10 A 

2 IND2 7 A 

3 IND3 20 A 

4 IND4 14 A 

5 IND5 14 A 

6 IND6 12 A 

7 IND7 10 A 

8 IND8 23 A 

9 IND9 17 A 

10 IND10 20 A 

11 IND11 14 A 

12 IND12 13 A 

13 IND13 11 B 

14 IND14 17 B 

15 IND15 21 B 

16 IND16 11 B 

17 IND17 16 B 

18 IND18 14 B 

19 IND19 17 B 

20 IND20 17 B 

http://www.sthda.com/upload/boxplot_format.txt


49  

21 IND21 19 B 

22 IND22 21 B 

23 IND23 7 B 

24 IND24 13 B 

25 IND25 0 C 

26 IND26 1 C 

27 IND27 7 C 

28 IND28 2 C 

29 IND29 3 C 

30 IND30 1 C 

31 IND31 2 C 

32 IND32 1 C 

33 IND33 3 C 

34 IND34 0 C 

35 IND35 1 C 

36 IND36 4 C 

37 IND37 3 D 

38 IND38 5 D 

39 IND39 12 D 

40 IND40 6 D 

41 IND41 4 D 

42 IND42 3 D 

43 IND43 5 D 

44 IND44 5 D 

45 IND45 5 D 

46 IND46 5 D 

47 IND47 2 D 

48 IND48 4 D 

49 IND49 3 E 

50 IND50 5 E 

51 IND51 3 E 

52 IND52 5 E 

53 IND53 3 E 

54 IND54 6 E 

55 IND55 1 E 

56 IND56 1 E 

57 IND57 3 E 

58 IND58 2 E 

59 IND59 6 E 

60 IND60 4 E 

61 IND61 11 F 

62 IND62 9 F 

63 IND63 15 F 

64 IND64 22 F 

65 IND65 15 F 

66 IND66 16 F 

67 IND67 13 F 

68 IND68 10 F 

69 IND69 26 F 

70 IND70 26 F 



50  

71 IND71 24 F 

72 IND72 13 F 

 
 

Import dataset in R programming 
R is a programming language designed for data analysis. Therefore, loading data is one of the core 

features of R. 

R contains a set of functions that can be used to load data sets into memory. You can also load data into 

memory using R Studio - via the menu items and toolbars. 

Data Formats 

R can load data in two different formats: 
 CSV files 

 Text files 

CSV means Comma Separated Values. You can export CSV files from many data carrying 

applications. For instance, you can export CSV files from data in an Excel spreadsheet. Here 

is an example of how a CSV file looks like inside: 

 
As you can see, the values on each line are separated by commas. The first line contains a list 
of column names. These column names tell what the data in the following lines mean. These 

names only make sense to you. R does not care about these names. R just uses these name to 

identify data from the different columns. 

A text file is typically similar to a CSV file, but instead of using commas as separators 

between values, text files often use other characters, like e.g. a Tab character. Here is an 

example of how a text file could look inside: 
 

name id salary 

"John Doe" 1 99999.00 

"Joe Blocks" 2 120000.00 
"Cindy Loo" 3 150000.00 

As you can see, the data might be easier to read in text format - if you look at the data directly 

in the data file that is. Once the data is loaded into R / R studio, there is no difference. You 

can look at the data in R Studio's tabular data set viewer, and then you cannot see the 

difference between CSV files and text files. 

Actually, the name "text files" is a bit confusing. Both CSV files and text files contains data 

in textual form (as characters). One just uses commas as separator between the values, 

whereas the others use a tab character. 

 

Load Data Via R Studio Menu Items 

The easiest way to load data into memory in R is by using the R Studio menu items. R Studio 

has menu items for loading data in two different places. The first is in the toolbar of the upper 

right section of R Studio. This screenshot shows where the "Import Dataset" button is (look 

for the little mouse pointer "hand") : 

name,id,salary 

"John Doe",1,99999.00 

"Joe Blocks",2,120000.00 

"Cindy Loo",3,150000.00 



51  

 
 

When you click the button you get this little menu: 

 

You can also import data from the top menu of R Studio. The next screenshot shows where 

the "Import Dataset" menu item is located in R Studio's top menu: 

 

Text File or Web URL 

As you can see in both the "Import Dataset" menu items, you can import a data set "From 

Text File" or "From Web URL". These two options refer to where you load the data from. 

"From Text File" means from a text file on your local computer. "From Web URL" means 

that you load the data from a web server somewhere on the internet. 

Regardless of whether you choose "From Text File" or "From Web URL", R can load the file 

as either a CSV or text file. The location of the file has nothing to do with the data format 

used inside the file. Don't get confused by that. The menu item "From Text file" does not 

mean "text file format" (tab characters as separators). It just means "a file on your local 

computer". "From Local File" would probably have been a more informative text for this 

menu item. 

Selecting Data Format 

After you have chosen the location to load the file from, you will be shown a dialog like this: 



52  

 
 

The select boxes (drop down boxes) allows you to specify different configurations about the 

data format of the file you are about to import. In the boxes on the right you can see two 

boxes. The top box shows you what the data file looks like. The bottom box shows you how 

R Studio interprets the data in the file based on the configurations chosen in the select boxes 

in the left side of the dialog. If you change the choices in the select boxes you will see that 

the bottom right box changes. 

When you have selected all the configurations you need in the select boxes on the left, click 

the "Import" button. The data will now be loaded into R Studio. 

Note that R Studio prints the R commands needed to load the data into the R console in the 

left side of R studio. You can copy these functions and use them to load data into R via R 

code. 

After the Data is Loaded 

After you have loaded the data into R Studio it will look similar to the screenshot below: 



53  

 
 

 

7(b) Reading Excel data sheet in R. 

Steps to Import an Excel file into R 

 
Step 1: Install the readxl package 

In the R Console, type the following command to install the readxl package: 

install.packages(“readxl”) 

 
Step 2: Prepare your Excel File 

Let’s suppose that you have an Excel file with some data about products: 
Product Price 

Refrigerator 1200 

Oven 750 

Dishwasher 900 

Coffee Maker 300 

And let’s say that the Excel file name is product_list, and your goal is to import that file into 

R. 

Step 3: Import the Excel file into R 

In order to import your file, you’ll need to apply the following template in the R Editor: 

library(“readxl”) 

read.excel(“Path where your Excel file is stored\\FileName.xlsx”) 



54  

Example: 

my_data <- read_excel("product_list.xlsx") 

my_data 

(OR) 

my_data <- read_excel(file.choose()) 

my_data 

Note: 

If you use the R code above in RStudio, you will be asked to choose a file. 

Output: 

# A tibble: 4 x 2 
Product Price 

<chr> <dbl> 

1 Refrigerator 1200 

2 Oven 750 

3 Dishwasher 900 
4   Coffee Maker 300 

 

Importing Excel files using xlsx package 

The xlsx package, a java-based solution, is one of the powerful R packages 

to read, write and format Excel files. 

Installing and loading xlsx package 

 Install 
install.packages(“xlsx”) 

 Load 
library(“xlsx) 

 

 
Using xlsx package 

There are two main functions in xlsx package for reading both xls and xlsx Excel files: 

read.xlsx() and read.xlsx2() [faster on big files compared to read.xlsx function]. 

 

The simplified formats are: 

read.xlsx(file, sheetIndex, header=TRUE) 

read.xlsx2(file, sheetIndex, header=TRUE) 

 

 file: file path 

 sheetIndex: the index of the sheet to be read 

 header: a logical value. If TRUE, the first row is used as column names. 

Example: 

library(“xlsx”) 

my_data1 <- read.xlsv(file.choose(), 1) # read first sheet 



55  

7(c) Reading XML dataset in R. 

In R, we can read the xml files by installing "XML" package into the R environment. This 

package will be installed with the help of the familiar command i.e., install. packages. 

 

install.packages(“XML”) 

 

Creating XML File 
Save the following data with the .xml file extension to create an xml file. XML tags describe the 

meaning of data, so that data contained in such tags can easily tell or explain about the data. 

Example: xml_data.xml 
 

Reading XML File 

In R, we can easily read an xml file with the help of xmlParse() function. This function is stored 

as a list in R. To use this function, we first need to load the xml package with the help of the 

library() function. Apart from the xml package, we also need to load one additional package 

named methods. 

 

# To download file to the current working directory 

download.file("https://www.w3schools.com/xml/simple.xml", "breakfast.xml") 

 

# Install XML package 

install.packages("XML") 

 

# To load library 

library(XML) 

 

# Giving the input file name to the function. 

doc <- xmlParse("breakfast.xml") 

print(doc) 

#Converting the data into list 

xml_data <-xmlToList(doc) 

print(xml_data) 

xmldataframe <- xmlToDataFrame("breakfast.xml") 

xmldataframe 

 

Output: 

library(XML) 

> doc <- xmlParse("breakfast.xml") 

> print(doc) 

<?xml version="1.0" encoding="UTF-8"?> 

<breakfast_menu> 

<food> 

<name>Belgian Waffles</name> 

<price>$5.95</price> 

<description>Two of our famous Belgian Waffles with plenty of real maple 

syrup</description> 

<calories>650</calories> 

</food> 

<food> 

http://www.w3schools.com/xml/simple.xml


56  

<name>Strawberry Belgian Waffles</name> 

<price>$7.95</price> 

<description>Light Belgian waffles covered with strawberries and whipped 

cream</description> 

<calories>900</calories> 

</food> 

<food> 

<name>Berry-Berry Belgian Waffles</name> 

<price>$8.95</price> 

<description>Light Belgian waffles covered with an assortment of fresh berries and 

whipped cream</description> 

<calories>900</calories> 

</food> 

<food> 

<name>French Toast</name> 

<price>$4.50</price> 

<description>Thick slices made from our homemade sourdough bread</description> 

<calories>600</calories> 

</food> 

<food> 

<name>Homestyle Breakfast</name> 

<price>$6.95</price> 

<description>Two eggs, bacon or sausage, toast, and our ever-popular hash 

browns</description> 

<calories>950</calories> 

</food> 

</breakfast_menu> 

 

> xml_data <-xmlToList(doc) 

> print(xml_data) 

$food 

$food$name 

[1] "Belgian Waffles" 

$food$price 

[1] "$5.95" 

$food$description 

[1] "Two of our famous Belgian Waffles with plenty of real maple syrup" 

$food$calories 

[1] "650" 

$food 

$food$name 

[1] "Strawberry Belgian Waffles" 

$food$price 

[1] "$7.95" 

$food$description 

[1] "Light Belgian waffles covered with strawberries and whipped cream" 

$food$calories 

[1] "900" 

$food 

$food$name 



57  

[1] "Berry-Berry Belgian Waffles" 

$food$price 

[1] "$8.95" 

$food$description 

[1] "Light Belgian waffles covered with an assortment of fresh berries and whipped cream" 

$food$calories 

[1] "900" 

$food 

$food$name 

[1] "French Toast" 

$food$price 

[1] "$4.50" 

$food$description 

[1] "Thick slices made from our homemade sourdough bread" 

$food$calories 

[1] "600" 

$food 

$food$name 

[1] "Homestyle Breakfast" 

$food$price 

[1] "$6.95" 

$food$description 

[1] "Two eggs, bacon or sausage, toast, and our ever-popular hash browns" 

$food$calories 

[1] "950" 



58  

Week-8 

8(a) Implement R script to create a Pie chart, Bar chart, scatter plot and Histogram. 

(Introduction to ggplot2 graphics) 

Program: 

# Creating data for the graph. 

x <- c(20, 65, 15, 50) 

print(x) 

labels <- c("India", "America", "Shri Lanka", "Nepal") 

print(labels) 

# Giving the chart file a name. 

png(file = "Country.jpg") 

# Plotting the chart. 

pie(x,labels) 

# Saving the file. 

dev.off() 

 

Output: 
 

 

 

 

 
 

 

 

 

 

 
Program: 

# Creating the data for Bar chart 

H<- c(12,35,54,3,41) 

# Giving the chart file a name 

png(file = "bar_chart.png") 

# Plotting the bar chart 

barplot(H) 

# Saving the file 

dev.off() 



59  

Output: 
 

 

 

 

 
 

# Creating the data for the chart. 

v <- c(13,22,28,7,31) 

# Giving a name to the chart file. 

png(file = "line_graph_feature.jpg") 

# Plotting the bar chart. 

plot(v,type = "o",col="green",xlab="Month",ylab="Temperature") 

# Saving the file. 

dev.off() 

Output: 



60  

 

 

 

 
 

 

 

 

 

8(b) Implement R Script to perform mean, median, mode, range, summary, variance, 

standard deviation operations. 

In the descriptive analysis, we describe our data in some manner and present it in a 

meaningful way so that it can be easily understood. Most of the time it is performed on 

small data sets and this analysis helps us a lot to predict some future trends based on the 

current findings. Some measures that are used to describe a data set are measures of central 

tendency and measures of variability or dispersion. 

Process of Descriptive Analysis 
 Measure of central tendency 

 Measure of variability 



61  

 

Measure of central tendency 

It represents the whole set of data by single value.It gives us the location of central points. 

There are three main measures of central tendency: 

 Mean 

 Mode 

 Median 

 

Measure of variability 

Measure of variability is known as the spread of data or how well is our data is distributed. 

The most common variability measures are: 

Mean 

It is calculated by taking the sum of the values and dividing with the number of values in a 

data series. 

The function mean() is used to calculate this in R. 

Syntax 

The basic syntax for calculating mean in R is − 

mean(x, trim = 0, na.rm = FALSE, ...)  

Following is the description of the parameters used − 

 x is the input vector. 

 trim is used to drop some observations from both end of the sorted vector. 

 na.rm is used to remove the missing values from the input vector. 

Example: 

# Create a vector. 

x <- c(12,7,3,4.2,18,2,54,-21,8,-5) 

# Find Mean. 



62  

result.mean <- mean(x,trim = 0.3) 

print(result.mean) 

Output: 

[1] 5.55 

 
Median 

The middle most value in a data series is called the median. The median() function is used in 

R to calculate this value. 

Syntax 

The basic syntax for calculating median in R is − 

median(x, na.rm = FALSE)  

Following is the description of the parameters used − 

 x is the input vector. 

 na.rm is used to remove the missing values from the input vector. 

Example 

# Create the vector. 

x <- c(12,7,3,4.2,18,2,54,-21,8,-5) 

 

# Find the median. 

median.result <- median(x) 

print(median.result) 

Output: 

[1] 5.6 

 
Mode 

The mode is the value that has highest number of occurrences in a set of data. Unike mean 

and median, mode can have both numeric and character data. 

R does not have a standard in-built function to calculate mode. So we create a user function 

to calculate mode of a data set in R. This function takes the vector as input and gives the mode 

value as output. 

Example 

 

# Create the function. 

getmode <- function(v) { 

uniqv <- unique(v) 

uniqv[which.max(tabulate(match(v, uniqv)))] 

} 

# Create the vector with numbers. 

v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3) 

 

# Calculate the mode using the user function. 

result <- getmode(v) 

print(result) 



63  

# Create the vector with characters. 

charv <- c("o","it","the","it","it") 

 

# Calculate the mode using the user function. 

result <- getmode(charv) 

print(result) 

Output: 

[1] 2 

[1] "it" 

 
 

Measures of Variability 

Following are some of the measures of variability that R offers to differentiate between data 

sets: 

 Variance 

 Standard Deviation 

 Range 

 Mean Deviation 

 Interquartile Range 

 

Population vs sample variance 

Different formulas are used for calculating variance depending on whether you have data 

from a whole population or a sample. 

Population variance 

When you have collected data from every member of the population that you’re interested in, 

you can get an exact value for population variance. 

The population variance formula looks like this: 

Formula Explanation 

 

 

 σ2 = population variance 

 Σ = sum of… 

 Χ = each value 

 μ = population mean 

 Ν = number of values in the population 

 

Sample variance 

When you collect data from a sample, the sample variance is used to make estimates 

or inferences about the population variance. 

The sample variance formula looks like this: 

Formula Explanation 

 

 

 s2 = sample variance 

 Σ = sum of… 

 Χ = each value 

 x̄ = sample mean 

 n = number of values in the sample 



64  

x ̅= (46 + 69 + 32 + 60 + 52 + 41) ÷ 6 = 50 

Mean (x̅) 

With samples, we use n – 1 in the formula because using n would give us a biased estimate 

that consistently underestimates variability. The sample variance would tend to be lower than 

the real variance of the population. 

 

Reducing the sample n to n – 1 makes the variance artificially large, giving you an unbiased 

estimate of variability: it is better to overestimate rather than underestimate variability in 

samples. 

 

Variance 

 The variance is a measure of variability. It is calculated by taking the average of 

squared deviations from the mean. 

 Variance tells you the degree of spread in your data set. The more spread the data, the 

larger the variance is in relation to the mean. 
 

Steps for calculating the variance 

The variance is usually calculated automatically by whichever software you use for your 

statistical analysis. But you can also calculate it by hand to better understand how the formula 

works. 

 

There are five main steps for finding the variance by hand. We’ll use a small data set of 6 

scores to walk through the steps. 

 

Data set 

46 69 32 60 52 41 

 

Step 1: Find the mean 

To find the mean, add up all the scores, then divide them by the number of scores. 
 

 

 

Step 2: Find each score’s deviation from the mean 

Subtract the mean from each score to get the deviations from the mean. 

Since x̅ = 50, take away 50 from each score. 
 

Scor

e 

Deviation from the mean 

46 46 – 50 = -4 

69 69 – 50 = 19 

32 32 – 50 = -18 



65  

886 ÷ (6 – 1) = 886 ÷ 5 = 177.2 

Variance 

Scor

e 

Deviation from the mean 

60 60 – 50 = 10 

52 52 – 50 = 2 

41 41 – 50 = -9 

 

Step 3: Square each deviation from the mean 

Multiply each deviation from the mean by itself. This will result in positive numbers. 

 

Squared deviations from the 

mean 

(-4)2 = 4 × 4 = 16 

192 = 19 × 19 = 361 

(-18)2 = -18 × -18 = 324 

102 = 10 × 10 = 100 

22 = 2 × 2 = 4 

(-9)2 = -9 × -9 = 81 

 

Step 4: Find the sum of squares 

Add up all of the squared deviations. This is called the sum of squares. 

 

Sum of squares 

16 + 361 + 324 + 100 + 4 + 81 = 

886 

 

Step 5: Divide the sum of squares by n – 1 or N 

Divide the sum of the squares by n – 1 (for a sample) or N (for a population). 

Since we’re working with a sample, we’ll use n – 1, where n = 6. 
 

Example: 

# Defining vector 

x <- c(46, 69, 32, 60, 52, 41) 

# Print variance of x print(var(x)) 



66  

Output: 

[1] 177.2 

 

Range: 

In statistics, the range is the spread of your data from the lowest to the highest value in the 

distribution. It is a commonly used measure of variability. 

 

The range is calculated by subtracting the lowest value from the highest value. While a large 

range means high variability, a small range means low variability in a distribution. 

 

Calculate the range 

The formula to calculate the range is: 

 

 
 R = range 

 H = highest value 

 L = lowest value 

The range is the easiest measure of variability to calculate. 

To find the range, follow these steps: 
1. Order all values in your data set from low to high. 

2. Subtract the lowest value from the highest value. 

This process is the same regardless of whether your values are positive or negative, or whole 

numbers or fractions. 

 
Range example 

 

 

Your data set is the ages of 8 participants. 
 

 

 

 
Participant 1 2 3 4 5 6 7 8 

Age 37 19 31 29 21 26 33 36 

 
 

First, order the values from low to high to identify the lowest value (L) and the highest value (H). 
 

 
 

Age 19 21 26 29 31 33 36 37 

 
 

Then subtract the lowest from the highest value. 

R = H – L 



67  

R = 37 – 19 = 18 

The range of our data set is 18 years. 
 

How useful is the range? 

The range generally gives you a good indicator of variability when you have a distribution 

without extreme values. When paired with measures of central tendency, the range can tell 

you about the span of the distribution. 

 

Example: 

 

# Defining vector 

x <- c(19, 21, 26, 29, 31, 33, 36, 37) 

 

# range() function output 

print(range(x)) 

 

# Using max() and min() function 

# to calculate the range of data set 

print(max(x)-min(x)) 

 

Output: 

print(range(x)) 

[1] 19 37 

 

# Using max() and min() function 

# To calculate the range of data set 

print(max(x)-min(x)) 

[1] 18 

 
 

Standard Deviation 

 The standard deviation is the average amount of variability in your dataset. It tells 

you, on average, how far each value lies from the mean. 

 A high standard deviation means that values are generally far from the mean, while a 

low standard deviation indicates that values are clustered close to the mean. 
 

What does standard deviation tell you? 

Standard deviation is a useful measure of spread for normal distributions. 
 

In normal distributions, data is symmetrically distributed with no skew. Most values cluster 

around a central region, with values tapering off as they go further away from the center. The 

standard deviation tells you how spread out from the center of the distribution your data is on 

average. 

 

Many scientific variables follow normal distributions, including height, standardized test 

scores, or job satisfaction ratings. When you have the standard deviations of different 

samples, you can compare their distributions using statistical tests to make inferences about 

the larger populations they came from. 



68  

Standard deviation formulas for populations and samples 

Different formulas are used for calculating standard deviations depending on whether you 

have data from a whole population or a sample. 

Population standard deviation 

When you have collected data from every member of the population that you’re interested in, 

you can get an exact value for population standard deviation. 

 

The population standard deviation formula looks like this: 

Formula Explanation 

 

 

 σ = population standard deviation 

 ∑ = sum of… 

 X = each value 

 μ = population mean 

 N = number of values in the population 

 
Sample standard deviation 

When you collect data from a sample, the sample standard deviation is used to make 

estimates or inferences about the population standard deviation. 

The sample standard deviation formula looks like this: 

Formula Explanation 

 

 

 s = sample standard deviation 

 ∑ = sum of… 

 X = each value 

 x̅ = sample mean 

 n = number of values in the sample 

With samples, we use n – 1 in the formula because using n would give us a biased estimate 

that consistently underestimates variability. 

The sample standard deviation would tend to be lower than the real standard deviation of the 

population. 

Reducing the sample n to n – 1 makes the standard deviation artificially large, giving you a 

conservative estimate of variability. 

 

Steps for calculating the standard deviation 

The standard deviation is usually calculated automatically by whichever software you use for 

your statistical analysis. But you can also calculate it by hand to better understand how the 

formula works. 

There are six main steps for finding the standard deviation by hand. 

We’ll use a small data set of 6 scores to walk through the steps. 

Data set 

46 69 32 60 52 41 

Step 1: Find the mean 

To find the mean, add up all the scores, then divide them by the number of scores. 



69  

 
 

Step 2: Find each score’s deviation from the mean 

Subtract the mean from each score to get the deviations from the mean. 

Since x̅ = 50, here we take away 50 from each score. 
 

 

 
Score Deviation from the mean 

46 46 – 50 = -4 

69 69 – 50 = 19 

32 32 – 50 = -18 

60 60 – 50 = 10 

52 52 – 50 = 2 

41 41 – 50 = -9 

 

Step 3: Square each deviation from the mean 

Multiply each deviation from the mean by itself. This will result in positive numbers. 

 

Squared deviations from the 

mean 

(-4)2 = 4 × 4 = 16 

192 = 19 × 19 = 361 

(-18)2 = -18 × -18 = 324 

102 = 10 × 10 = 100 

22 = 2 × 2 = 4 

(-9)2 = -9 × -9 = 81 

Step 4: Find the sum of squares 

Add up all of the squared deviations. This is called the sum of squares. 

Sum of squares 

16 + 361 + 324 + 100 + 4 + 81 = 

886 

Step 5: Find the variance 

Divide the sum of the squares by n – 1 (for a sample) or N (for a population) – this is 

the variance. 

x ̅= (46 + 69 + 32 + 60 + 52 + 41) ÷ 6 = 50 

Mean (x̅) 



70  

Since we’re working with a sample size of 6, we will use n – 1, where n = 6. 

 
Step 6: Find the square root of the variance 

To find the standard deviation, we take the square root of the variance. 

 
From learning that SD = 13.31, we can say that each score deviates from the mean by 13.31 
points on average. 

 

You can calculate standard deviation in R using the sd() function. This standard deviation 

function is a part of standard R, and needs no extra packages to be calculated. 

 
Example: 

 

# Defining vector 

x <- c(46, 69, 32, 60, 52, 41) 

 

# Standard deviation 

d <- sqrt(var(x)) 

 

# Print standard deviation of x 

print(d) 

 

# Use sd() function to calculate Standard Deviation 

print(sd(x)) 

 

Output: 

# Print standard deviation of x 

print(d) 

[1] 13.31165 

 

# Use sd() function to calculate Standard Deviation 

print(sd(x)) 

[1] 13.31165 

√177.2 = 13.31 

Standard deviation 

886 ÷ (6 – 1) = 886 ÷ 5 = 177.2 

Variance 



71  

Week 9 
9 (a) Implement R Script to perform Normal, Binomial distributions. 

R Normal Distribution 
In random collections of data from independent sources, it is commonly seen that the distribution of 

data is normal. It means that if we plot a graph with the value of the variable in the horizontal axis and 

counting the values in the vertical axis, then we get a bell shape curve. The curve center represents the 

mean of the data set. In the graph, fifty percent of the value is located to the left of the mean. And the 

other fifty percent to the right of the graph. This is referred to as the normal distribution. 

R allows us to generate normal distribution by providing the following functions: 
 

 

This function can have the following parameters: 

 

S.No Parameter Description 

1. x It is a vector of numbers. 

2. p It is a vector of probabilities. 

3. n It is a vector of observations. 

4. mean It is the mean value of the sample data whose default value is zero. 

5. sd It is the standard deviation whose default value is 1. 

Let's start understanding how these functions are used with the help of the examples. 

dnorm():Density 

The dnorm() function of R calculates the height of the probability distribution at each point for 

a given mean and standard deviation. The probability density of the normal distribution is: 

 

Example 

# Creating a sequence of numbers between -1 and 20 incrementing by 0.2. 

x <- seq(-1, 20, by = .2) 

# Choosing the mean as 2.0 and standard deviation as 0.5. 

y <- dnorm(x, mean = 2.0, sd = 0.5) 

# Giving a name to the chart file. 

png(file = "dnorm.png") 

#Plotting the graph 

plot(x,y) 

# Saving the file. 

dev.off() 



72  

Output: 
 

 

pnorm():Direct Look-Up 

The dnorm() function is also known as "Cumulative Distribution Function". This function 

calculates the probability of a normally distributed random numbers, which is less than the 

value of a given number. The cumulative distribution is as follows: 

f(x)=P(X≤x) 

Example: 

# Creating a sequence of numbers between -1 and 20 incrementing by 0.2. 

x <- seq(-1, 20, by = .1) 

# Choosing the mean as 2.0 and standard deviation as 0.5. 

y <- pnorm(x, mean = 2.0, sd = 0.5) 

# Giving a name to the chart file. 

png(file = "pnorm.png") 

#Plotting the graph 

plot(x,y) 

# Saving the file. 

dev.off() 

 

Output: 



73  

 
 

 
 

qnorm():Inverse Look-Up 

The qnorm() function takes the probability value as an input and calculates a number whose 

cumulative value matches with the probability value. The cumulative distribution function and 

the inverse cumulative distribution function are related by 

p=f(x) 

x=f-1 (p) 

Example: 

# Creating a sequence of numbers between -1 and 20 incrementing by 0.2. 

x <- seq(0, 1, by = .01) 

# Choosing the mean as 2.0 and standard deviation as 0.5. 

y <- qnorm(x, mean = 2.0, sd = 0.5) 

# Giving a name to the chart file. 

png(file = "qnorm.png") 

#Plotting the graph 

plot(y,x) 

# Saving the file. 

dev.off() 

Output: 



74  

 

 

 
 

rnorm():Random variates 

The rnorm() function is used for generating normally distributed random numbers. This 

function generates random numbers by taking the sample size as an input. Let's see an example 

in which we draw a histogram for showing the distribution of the generated numbers. 

 

Example: 

# Creating a sequence of numbers between -1 and 20 incrementing by 0.2. 

x <- rnorm(1500, mean=80, sd=15 ) 

# Giving a name to the chart file. 

png(file = "rnorm.png") 

#Creating histogram 

hist(x,probability =TRUE,col="red",border="black") 

# Saving the file. 

dev.off() 

Output: 



75  

 

 
 

Binomial Distribution 

The binomial distribution is also known as discrete probability distribution, which is used 

to find the probability of success of an event. The event has only two possible outcomes in a 

series of experiments. The tossing of the coin is the best example of the binomial distribution. 

When a coin is tossed, it gives either a head or a tail. The probability of finding exactly three 

heads in repeatedly tossing the coin ten times is approximate during the binomial distribution. 

R allows us to create binomial distribution by providing the following function: 

 

This function can have the following parameters: 

S.No Parameter Description 

1. x It is a vector of numbers. 

2. p It is a vector of probabilities. 

3. n It is a vector of observations. 

4. size It is the number of trials. 

5. prob It is the probability of the success of each trial. 



76  

Let's start understanding how these functions are used with the help of the examples 

dbinom(): Direct Look-Up, Points 

The dbinom() function of R calculates the probability density distribution at each point. In 

simple words, it calculates the density function of the particular binomial distribution. 

Example 

# Creating a sample of 100 numbers which are incremented by 1.5. 

x <- seq(0,100,by = 1) 

# Creating the binomial distribution. 

y <- dbinom(x,50,0.5) 

# Giving a name to the chart file. 

png(file = "dbinom.png") 

# Plotting the graph. 

plot(x,y) 

# Saving the file. 

dev.off() 

Output: 
 

 

 

pbinom():Direct Look-Up, Intervals 

The dbinom() function of R calculates the cumulative probability(a single value representing 

the probability) of an event. In simple words, it calculates the cumulative distribution function 

of the particular binomial distribution. 

 

Example 

# Probability of getting 20 or fewer heads from 48 tosses of a coin. 

x <- pbinom(20,48,0.5) 

#Showing output 

print(x) 



77  

Output: 

[1] 0.1561634 

 

 

qbinom(): Inverse Look-Up 

The qbinom() function of R takes the probability value and generates a number whose 

cumulative value matches with the probability value. In simple words, it calculates the inverse 

cumulative distribution function of the binomial distribution. 

Let's find the number of heads that have a probability of 0.45 when a coin is tossed 51 times. 

Example 

# Finding number of heads with the help of qbinom() function 

x <- qbinom(0.45,48,0.5) 

#Showing output 

print(x) 

 

Output: 

[1] 24 

 

rbinom() 

The rbinom() function of R is used to generate required number of random values for given 

probability from a given sample. 

Let's see an example in which we find nine random values from a sample of 160 with a 

probability of 0.5. 

Example: 

# Finding random values 

x <- rbinom(9,160,0.5) 

#Showing output 

print(x) 

 

Output: 

[1] 94 74 83 81 78 84 77 78 81 

 
 

9(b) Implement R Script to perform correlation, Linear and multiple regression. 

A step-by-step guide to linear regression in R 

Linear regression is a regression model that uses a straight line to describe the relationship 

between variables. It finds the line of best fit through your data by searching for the value of 

the regression coefficient(s) that minimizes the total error of the model. 

There are two main types of linear regression: 

 Simple linear regression uses only one independent variable 

 Multiple linear regression uses two or more independent variables 

In this step-by-step guide, we will walk you through linear regression in R using two sample 

datasets. 

Simple linear regression: 

The first dataset contains observations about income (in a range of $15k to $75k) and 

happiness (rated on a scale of 1 to 10) in an imaginary sample of 500 people. The income 

values are divided by 10,000 to make the income data match the scale of the happiness 

scores (so a value of $2 represents $20,000, $3 is $30,000, etc.) 

Multiple linear regression: 



78  

The second dataset contains observations on the percentage of people biking to work each 

day, the percentage of people smoking, and the percentage of people with heart disease in an 

imaginary sample of 500 towns. 

 

To install the packages, you need for the analysis, run this code: 

install.packages("ggplot2") 

install.packages("dplyr") 

install.packages("broom") 

install.packages("ggpubr") 

Next, load the packages into your R environment by running this code: 

library(ggplot2) 

library(dplyr) 

library(broom) 

library(ggpubr) 

 

Step 1: Load the data into R 

Follow these four steps for each dataset: 
1. In RStudio, go to File > Import dataset > From Text (base). 

2. Choose the data file you have downloaded (income.data or heart.data), and an Import 

Dataset window pops up. 

3. In the Data Frame window, you should see an X (index) column and columns listing the 

data for each of the variables (income and happiness or biking, smoking, and heart.disease). 

4. Click on the Import button and the file should appear in your Environment tab on the upper 

right side of the RStudio screen. 

After you’ve loaded the data, check that it has been read in correctly using summary(). 

Simple regression 

summary(income.data) 

 Because both our variables are quantitative, when we run this function, we see a table 
in our console with a numeric summary of the data. This tells us the minimum, 

median, mean, and maximum values of the independent variable (income) and 

dependent variable (happiness): 

 

Multiple regression 

summary(heart.data) 

 Again, because the variables are quantitative, running the code produces a numeric 

summary of the data for the independent variables (smoking and biking) and the 

dependent variable (heart disease): 



79  

 
 

Step 2: Make sure your data meet the assumptions 

We can use R to check that our data meet the four main assumptions for linear regression. 

Simple regression 

1. Independence of observations (aka no autocorrelation) 

Because we only have one independent variable and one dependent variable, we don’t need 

to test for any hidden relationships among variables. 

If you know that you have autocorrelation within variables (i.e. multiple observations of the 

same test subject), then do not proceed with a simple linear regression! Use a structured 

model, like a linear mixed-effects model, instead. 
2. Normality 

To check whether the dependent variable follows a normal distribution, use 

the hist() function. 
hist(income.data$happiness) 

 
 

The observations are roughly bell-shaped (more observations in the middle of the 

distribution, fewer on the tails), so we can proceed with the linear regression. 
3. Linearity 

The relationship between the independent and dependent variable must be linear. We can test 

this visually with a scatter plot to see if the distribution of data points could be described with 

a straight line. 
plot(happiness ~ income, data = income.data) 



80  

 

 

 
 

 
 

The relationship looks roughly linear, so we can proceed with the linear model. 
4. Homoscedasticity (aka homogeneity of variance) 

This means that the prediction error doesn’t change significantly over the range of prediction 

of the model. We can test this assumption later, after fitting the linear model. 

Multiple regression 

1. Independence of observations (aka no autocorrelation) 

Use the cor() function to test the relationship between your independent variables and make 

sure they aren’t too highly correlated. 
cor(heart.data$biking, heart.data$smoking) 

When we run this code, the output is 0.015. The correlation between biking and smoking is 

small (0.015 is only a 1.5% correlation), so we can include both parameters in our model. 
2. Normality 

Use the hist() function to test whether your dependent variable follows a normal 

distribution. 
hist(heart.data$heart.disease) 



81  

 

 
 

The distribution of observations is roughly bell-shaped, so we can proceed with the linear 

regression. 
3. Linearity 

We can check this using two scatterplots: one for biking and heart disease, and one for 

smoking and heart disease. 
plot(heart.disease ~ biking, data=heart.data) 

 

 

 

 
 

 

plot(heart.disease ~ smoking, data=heart.data) 



82  

 

 
 

 
 

Although the relationship between smoking and heart disease is a bit less clear, it still appears 

linear. We can proceed with linear regression. 
4. Homoscedasticity 

We will check this after we make the model. 

 

Step 3: Perform the linear regression analysis 

Now that you’ve determined your data meet the assumptions, you can perform a linear 

regression analysis to evaluate the relationship between the independent and dependent 

variables. 

Simple regression: income and happiness 

Let’s see if there’s a linear relationship between income and happiness in our survey of 500 

people with incomes ranging from $15k to $75k, where happiness is measured on a scale of 1 

to 10. 

To perform a simple linear regression analysis and check the results, you need to run two 

lines of code. The first line of code makes the linear model, and the second line prints out the 

summary of the model: 

income.happiness.lm <- lm(happiness ~ income, data = income.data) 

summary(income.happiness.lm) 

The output looks like this: 



83  

 

This output table first presents the model equation, then summarizes the model residuals (see 

step 4). 

The Coefficients section shows: 
1. The estimates (Estimate) for the model parameters – the value of the y-intercept (in this case 

0.204) and the estimated effect of income on happiness (0.713). 

2. The standard error of the estimated values (Std. Error). 

3. The test statistic (t value, in this case the t-statistic). 

4. The p-value ( Pr(>| t | ) ), aka the probability of finding the given t-statistic if the null 

hypothesis of no relationship were true. 

The final three lines are model diagnostics – the most important thing to note is the p- 

value (here it is 2.2e-16, or almost zero), which will indicate whether the model fits the data 

well. 

From these results, we can say that there is a significant positive relationship between 

income and happiness (p-value < 0.001), with a 0.713-unit (+/- 0.01) increase in happiness 

for every unit increase in income. 

 

Multiple regression: biking, smoking, and heart disease 

Let’s see if there’s a linear relationship between biking to work, smoking, and heart disease 

in our imaginary survey of 500 towns. The rates of biking to work range between 1 and 75%, 

rates of smoking between 0.5 and 30%, and rates of heart disease between 0.5% and 20.5%. 

To test the relationship, we first fit a linear model with heart disease as the dependent 

variable and biking and smoking as the independent variables. Run these two lines of code: 

heart.disease.lm<-lm(heart.disease ~ biking + smoking, data = heart.data) 

 

summary(heart.disease.lm) 

The output looks like this: 



84  

 
 

The estimated effect of biking on heart disease is -0.2, while the estimated effect of smoking 

is 0.178. 

This means that for every 1% increase in biking to work, there is a correlated 0.2% decrease 

in the incidence of heart disease. Meanwhile, for every 1% increase in smoking, there is a 

0.178% increase in the rate of heart disease. 

The standard errors for these regression coefficients are very small, and the t-statistics are 

very large (-147 and 50.4, respectively). The p-values reflect these small errors and large t- 

statistics. For both parameters, there is almost zero probability that this effect is due to 

chance. 

 

Step 4: Check for homoscedasticity 

Before proceeding with data visualization, we should make sure that our models fit the 

homoscedasticity assumption of the linear model. 

Simple regression 

We can run plot(income.happiness.lm) to check whether the observed data meets our model 

assumptions: 
par(mfrow=c(2,2)) 

plot(income.happiness.lm) 

par(mfrow=c(1,1)) 

Note that the par(mfrow()) command will divide the Plots window into the number of rows and 

columns specified in the brackets. So par(mfrow=c(2,2)) divides it up into two rows and two 

columns. To go back to plotting one graph in the entire window, set the parameters again and 

replace the (2,2) with (1,1). 

These are the residual plots produced by the code: 



85  

 

Residuals are the unexplained variance. They are not exactly the same as model error, but 

they are calculated from it, so seeing a bias in the residuals would also indicate a bias in the 

error. 

The most important thing to look for is that the red lines representing the mean of the 

residuals are all basically horizontal and centered around zero. This means there are no 

outliers or biases in the data that would make a linear regression invalid. 

In the Normal Q-Qplot in the top right, we can see that the real residuals from our model 

form an almost perfectly one-to-one line with the theoretical residuals from a perfect model. 

Based on these residuals, we can say that our model meets the assumption of 

homoscedasticity. 

Multiple regression 

Again, we should check that our model is actually a good fit for the data, and that we don’t 

have large variation in the model error, by running this code: 
par(mfrow=c(2,2)) 

plot(heart.disease.lm) 

par(mfrow=c(1,1)) 

The output looks like this: 
 

As with our simple regression, the residuals show no bias, so we can say our model fits the 

assumption of homoscedasticity. 



86  

Step 5: Visualize the results with a graph 

Next, we can plot the data and the regression line from our linear regression model so that the 

results can be shared. 

Simple regression 

Follow 4 steps to visualize the results of your simple linear regression. 
1. Plot the data points on a graph 

income.graph<-ggplot(income.data, aes(x=income, y=happiness))+ 

geom_point() 

income.graph 

 
2. Add the linear regression line to the plotted data 

Add the regression line using geom_smooth() and typing in lm as your method for creating the 

line. This will add the line of the linear regression as well as the standard error of the 

estimate (in this case +/- 0.01) as a light grey stripe surrounding the line: 

income.graph <- income.graph + geom_smooth(method="lm", col="black") 

income.graph 

 
3. Add the equation for the regression line. 

income.graph <- income.graph + stat_regline_equation(label.x = 3, label.y = 7) 

income.graph 



87  

 
4. Make the graph ready for publication 

We can add some style parameters using theme_bw() and making custom labels 

using labs(). 

 

income.graph + theme_bw() + labs(title = "Reported happiness as a function of income", 

x = "Income (x$10,000)", 

y = "Happiness score (0 to 10)") 

This produces the finished graph that you can include in your papers: 
 

Multiple regression 
4. Change the ‘smoking’ variable into a factor 

This allows us to plot the interaction between biking and heart disease at each of the three 

levels of smoking we chose. 

plotting.data$smoking <- as.factor(plotting.data$smoking) 
5. Plot the original data 



88  

heart.plot <- ggplot(heart.data, aes(x=biking, y=heart.disease)) + geom_point 

 

 
6. Add the regression lines 

heart.plot <- heart.plot + 

geom_line(data=plotting.data, aes(x=biking, y=predicted.y, color=smoking), size=1.25) 

heart.plot 

 

7. Make the graph ready for publication 

heart.plot <- heart.plot +  theme_bw() + 

labs(title = "Rates of heart disease (% of population) \n as a function of biking to work and 

smoking", x = "Biking to work (% of population)", y = "Heart disease (% of population)", 

color = "Smoking \n (% of population)") 

heart.plot 

 

Because this graph has two regression coefficients, the stat_regline_equation() function won’t 

work here. But if we want to add our regression model to the graph, we can do so like this: 



89  

heart.plot + annotate(geom="text", x=30, y=1.75, label=" = 15 + (-0.2*biking) + 

0.178*smoking)") 

This is the finished graph that you can include in your papers! 

 

Step 6: Report your results 

In addition to the graph, include a brief statement explaining the results of the regression 

model. 

Specifically, we found a 0.2% decrease (± 0.0014) in the frequency of heart disease for every 

1% increase in biking, and a 0.178% increase (± 0.0035) in the frequency of heart disease for 

every 1% increase in smoking. 

 

What is the use of Linear regression analysis? 

Linear regression analysis is used to predict the value of a variable based on the value of 

another variable. The variable you want to predict is called the dependent variable. The 

variable you are using to predict the other variable's value is called the independent variable. 



90  

 

Week 10 
 

10(a) Working with Non-Tabular Data Types: Time series, spatial data, Network data. 

R - Time Series Analysis 

Time series is a series of data points in which each data point is associated with a timestamp. A simple 

example is the price of a stock in the stock market at different points of time on a given day. Another 

example is the amount of rainfall in a region at different months of the year. R language uses many 

functions to create, manipulate and plot the time series data. The data for the time series is stored in an 

R object called time-series object. It is also a R data object like a vector or data frame. 

The time series object is created by using the ts() function. 

Syntax 

The basic syntax for ts() function in time series analysis is − 

timeseries.object.name <- ts(data, start, end, frequency)  

Following is the description of the parameters used − 

 data is a vector or matrix containing the values used in the time series. 

 start specifies the start time for the first observation in time series. 

 end specifies the end time for the last observation in time series. 

 frequency specifies the number of observations per unit time. 

Except the parameter "data" all other parameters are optional. 

Example 

Consider the annual rainfall details at a place starting from January 2012. We create an R time 

series object for a period of 12 months and plot it. 

# Get the data points in form of a R vector. 

rainfall <- c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071) 

 

# Convert it to a time series object. 

rainfall.timeseries <- ts(rainfall,start = c(2012,1),frequency = 12) 

 

# Print the timeseries data. 

print(rainfall.timeseries) 

 

# Give the chart file a name. 

png(file = "rainfall.png") 

 

# Plot a graph of the time series. 

plot(rainfall.timeseries) 

 

# Save the file. 

dev.off() 

Output: 

print(rainfall.timeseries) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2012 799.0 1174.8 865.1 1334.6 635.4 918.5 685.5 998.6 784.2 985.0 882.8 1071.0 



91  

The Time series chart – 
 
 

Multiple Time Series 

We can plot multiple time series in one chart by combining both the series into a matrix. 

# Get the data points in form of a R vector. 

rainfall1 <- c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071) 

rainfall2 <- 

c(655,1306.9,1323.4,1172.2,562.2,824,822.4,1265.5,799.6,1105.6,1106.7,1337.8) 

# Convert them to a matrix. 

combined.rainfall <- matrix(c(rainfall1,rainfall2),nrow = 12) 

# Convert it to a time series object. 

rainfall.timeseries <- ts(combined.rainfall,start = c(2012,1),frequency = 12) 

# Print the timeseries data. 

print(rainfall.timeseries) 

# Give the chart file a name. 

png(file = "rainfall_combined.png") 

# Plot a graph of the time series. 

plot(rainfall.timeseries, main = "Multiple Time Series") 

# Save the file. 

dev.off() 

 

Output: 

Series 1 Series 2 
Jan 2012 799.0 655.0 

Feb 2012 1174.8 1306.9 

Mar 2012 865.1 1323.4 

Apr 2012 1334.6 1172.2 

May 2012 635.4 562.2 

Jun 2012 918.5 824.0 

Jul 2012 685.5 822.4 

Aug 2012 998.6 1265.5 

Sep 2012 784.2 799.6 

Oct 2012 985.0 1105.6 

Nov 2012 882.8 1106.7 
Dec 2012 1071.0 1337.8 

The Multiple Time series chart − 



92  

 

 

Spatial Data Analysis using R 

Download the data set IND_adm1.rds from github 

Make this data set available in current working directory. (IND_adm1.rds) 

library(rjson) 

library(ggmap) 

library(RgoogleMaps) 

library(png) 

library(sp) 

library(RColorBrewer) 

gadm <- readRDS("IND_adm1.rds", refhook = NULL) 

ind1 = gadm 

ind1 

spplot(ind1, "NAME_1", scales=list(draw=T), colorkey=F, main="India") 

ind1$NAME_1 = as.factor(ind1$NAME_1) 

ind1$fake.data = runif(length(ind1$NAME_1)) 

spplot(ind1,"NAME_1", col.regions=rgb(0,ind1$fake.data,0), colorkey=T, main="Indian 

States") 

Output: 
 

 
#Tamil Nadu 

TN=ind1[ind1$NAME_1=="Tamil Nadu",] 



93  

spplot(TN,"NAME_1", col.regions=rgb(0,0,1), main = "Tamil Nadu, 

India",scales=list(draw=T), colorkey =F) 

Output: 

 

 

#Telangana 

TS=ind1[ind1$NAME_1=="Telangana",] 

spplot(TS,"NAME_1", col.regions=rgb(0,0,1), main = "Telangana, 

India",scales=list(draw=T), colorkey =F) 

Output: 

 

 

 
#Adhra Pradesh 

AP=ind1[ind1$NAME_1=="Andhra Pradesh",] 

spplot(TS,"NAME_1", col.regions=rgb(0,0,1), main = "Andhra Pradesh, 

India",scales=list(draw=T), colorkey =F) 

Output: 



94  

 
 

#Districts of TamilNadu 

ind2=readRDS("IND_adm2.rds") 

TN_districts = (ind2[ind2$NAME_1=="Tamil Nadu",]) 

TN_districts$NAME_2=as.factor(TN_districts$NAME_2) 

col = rainbow(length(levels(TN_districts$NAME_2))) 

spplot(TN_districts,"NAME_2", main="The Districts of TamilNadu",col.regions=col, 

colorkey=T) 

Output: 

 

 
#Districts of Andhra Pradesh 

AP_districts = (ind2[ind2$NAME_1=="Andhra Pradesh",]) 

AP_districts$NAME_2=as.factor(AP_districts$NAME_2) 

col = rainbow(length(levels(AP_districts$NAME_2))) 

spplot(AP_districts,"NAME_2",main="The Districts of Andhra Pradesh", 

col.regions=col, colorkey=T) 

Output: 



95  

 

 
 

 

 

#Districts of Telangana 

TS_districts = (ind2[ind2$NAME_1=="Telangana",]) 

TS_districts$NAME_2=as.factor(TS_districts$NAME_2) 

col = rainbow(length(levels(TS_districts$NAME_2))) 

spplot(TS_districts,"NAME_2", main="The Districts of Telangana", col.regions=col, 

colorkey=T) 

Output: 

 

 
#Taluk,District-TamilNadu 

ind3=readRDS("IND_adm3.rds") 

TN_TALUKS=ind3[ind3$NAME_1=='Tamil Nadu',] 

TN_TALUKS$NAME_3<-as.factor(TN_TALUKS$NAME_3) 

col1=rainbow(length(levels(TN_TALUKS$NAME_3))) 

spplot(TN_TALUKS,"NAME_3",main = "Taluk, District - TN", 

colorkey=T,col.regions=col,scales=list(draw=T)) 

Output: 



96  

 
 
 

#Taluk,District-Andhra Pradesh 

AP_TALUKS=ind3[ind3$NAME_1=='Andhra Pradesh',] 

AP_TALUKS$NAME_3<-as.factor(AP_TALUKS$NAME_3) 

col1=rainbow(length(levels(AP_TALUKS$NAME_3))) 

spplot(AP_TALUKS,"NAME_3",main = "Taluk, District - AP", 

colorkey=T,col.regions=col,scales=list(draw=T)) 

Output: 
 
 

 

 

Network Data Analysis using R 

#Social Network Analysis 

#Load the library igraph 

library(igraph) 

#Create a simple graph 

g <- graph(c(1,2)) 

#Plot the graph 

plot(g) 



97  

Output: 

#Social Network Analysis 

#Load the library igraph 

library(igraph) 

#Create a simple graph 

g <- graph(c(1,2)) 

#Plot the graph 

#plot(g) 

#For node or vertex,if you want different color rather than default 

#Modify the size 

#we can choose different color for edge 

plot(g,vertex.color="green",vertex.size=40,edge.color='red') 

#After nodes 1 to 2, we can add other nodes also 

 

library(igraph) 

g <- graph(c(1,2,2,3,3,4,4,1),directed=F,n=7) 

plot(g,vertex.color="green",vertex.size=40,edge.color='red') 

# we can see the connection between edges 

g[] 

# Now we can have 4 nodes 

# if the arrow is growing from one node to another it is called directed graph 

#we can add the number of nodes also in the graph 

# Here we will take another graph with string objects 

# If we make directed = false 

library(igraph) 

g1 <- graph(c("Amy","Ram","Ram","Li","Li","Amy","Amy","Li","Kate","Li"),directed=F) 

#then use the plot 

plot(g1,vertex.color="green",vertex.size=40,edge.color='red') 

g1 

 

#Network Measures 

#one such measure is degree 

#degree means number of connections 

#we can also get the information by setting mode=all 

library(igraph) 

g1 <- graph(c("Amy","Ram","Ram","Li","Li","Amy","Amy","Li","Kate","Li"),directed=T) 

#then use the plot 

plot(g1,vertex.color="green",vertex.size=40,edge.color='red') 

g1 

degree(g1,mode='all') 

degree(g1,mode='in') 

degree(g1,mode='out') 

# we can get the diameter of the netwrok 

diameter(g1,directed=F, weights=NA) 

# we can calculate the density 

edge_density(g1,loops=F) 

ecount(g1)/(vcount(g1)*(vcount(g1)-1)) 

# we have 5 edges and 4 vertexs 

# reciprocity and closeness 

reciprocity(g1) 



98  

levels(sex) 

[1] "female" "male" 

nlevels(sex) 

[1] 2 

food <- factor(c("low", "high", "medium", "high", "low", "medium", "high")) 

levels(food) 

[1] "high"   "low" "medium" 

food <- factor(food, levels = c("low", "medium", "high")) 

levels(food) 

[1] "low" "medium" "high" 

food <- factor(food, levels = c("low", "medium", "high"), ordered = TRUE) 

levels(food) 

[1] "low" "medium" "high" 

min(food) # works! 

[1] low 

closeness(g1,mode='all', weights=NA) 

# we can calculate betweenness 

betweenness(g1,directed=T,weights=NA) 

edge_betweenness(g1,directed=T,weight=NA) 

 
 

10(b) Data Transformations: Converting Numeric Variables into Factors, Date 

Operations, String Parsing, Geocoding. 

 

Converting Numeric Variables into Factors 

Factors are used to represent categorical data. Factors can be ordered or unordered and are an 

important class for statistical analysis and for plotting. 

Factors are stored as integers, and have labels associated with these unique integers. While 

factors look (and often behave) like character vectors, they are actually integers under the 

hood, and you need to be careful when treating them like strings. 

Once created, factors can only contain a pre-defined set value, known as levels. By default, R 

always sorts levels in alphabetical order. For instance, if you have a factor with 2 levels: 

The factor() Command 
 

The factor() command is used to create and modify factors in R: 

sex <- factor(c("male", "female", "female", "male"))                                                                       

R will assign 1 to the level "female" and 2 to the level "male" (because f comes before m, even 

though the first element in this vector is "male"). You can check this by using the function 

levels(), and check the number of levels using nlevels(): 
 

Sometimes, the order of the factors does not matter, other times you might want to specify the 
order because it is meaningful (e.g., “low”, “medium”, “high”) or it is required by particular 

type of analysis. Additionally, specifying the order of the levels allows us to compare levels: 
 

 



99  

 Levels: low < medium < high  

 

Note: 

In R’s memory, these factors are represented by numbers (1, 2, 3). They are better than using 

simple integer labels because factors are self-describing: "low", "medium", and "high"” is more 

descriptive than 1, 2, 3. Which is low? You wouldn’t be able to tell with just integer data. 

Factors have this information built in. It is particularly helpful when there are many levels 

(like the subjects in our example data set). 

 

 
Categorical Variables 

Categorical variables in R are stored into a factor. Let’s check the code below to convert a 

character variable into a factor variable in R. Characters are not supported in machine 

learning algorithm, and the only way is to convert a string to an integer. 

 

Syntax 

factor(x = character(), levels, labels = levels, ordered = is.ordered(x)) 

Arguments: 
 x: A vector of categorical data in R. Need to be a string or integer, not decimal. 

 Levels: A vector of possible values taken by x. This argument is optional. The default value 

is the unique list of items of the vector x. 

 Labels: Add a label to the x categorical data in R. For example, 1 can take the label 

`male` while 0, the label `female`. 

 ordered: Determine if the levels should be ordered in categorical data in R. 

 

# Create gender vector 

gender_vector <- c("Male", "Female", "Female", "Male", 

"Male") class(gender_vector) 

# Convert gender_vector to a factor 

factor_gender_vector <-factor(gender_vector) 

class(factor_gender_vector) 

Output: 

 
## [1] "character" 

## [1] "factor" 

 

A categorical variable in R can be divided into nominal categorical variable and ordinal 

categorical variable. 

 
Nominal Categorical Variable 

A categorical variable has several values but the order does not matter. For instance, male or 

female. Categorical variables in R does not have ordering. 



100  

# Create a color vector 

color_vector <- c('blue', 'red', 'green', 'white', 'black', 'yellow') 

# Convert the vector to factor 

factor_color <- factor(color_vector) 

factor_color 

Output: 

 

## [1] blue red green white black yellow 

## Levels: black blue green red white yellow 

From the factor_color, we can’t tell any order. 

Ordinal Categorical Variable 

Ordinal categorical variables do have a natural ordering. We can specify the order, from the 

lowest to the highest with order = TRUE and highest to lowest with order = FALSE. 

 

Example: 

We can use summary to count the values for each factor variable in R. 

# Create Ordinal categorical vector 

day_vector <- c('evening', 'morning', 'afternoon', 'midday', 'midnight', 'evening') 

# Convert `day_vector` to a factor with ordered level 

factor_day <- factor(day_vector, order = TRUE, levels =c('morning', 'midday', 'afternoon', 

'evening', 'midnight')) 

# Print the new variable 

factor_day 

Output: 

 

## [1] evening morning   afternoon midday midnight evening 

 
Example: 

 
## Levels: morning < midday < afternoon < evening < 

midnight # Append the line to above code 

# Count the number of occurence of each level 

summary(factor_day) 

Output: 

## morning midday afternoon evening midnight ##

 1 1 1 2 1 

R ordered the level from ‘morning’ to ‘midnight’ as specified in the levels parenthesis. 
See an example below for the as.Date() function 



101  

#as.Date()function in R 

dv <- as.Date("2012-05-28") 

#standard date format for as.Date() is "YYYY-MM-DD" 

print(dv) 

Output: 

[1] "2012-05-28" 

 

Now, when we don’t have input value in a standard date format, we still can use the 

as.Date() function to create a dates value. See an example below: 

 

dv1 <- as.Date("01/22/2015",format='%m/%d/%y') 

print(dv1) 

Output: 

[1] "2020-01-22" 

 
In this example, if you could see, the input date value is ”01/22/2015”, which is not the standard date 

format. However, we have format = argument under the function, which allows it to arrange the date 

values in a standard form and present it to us. 

%d - means a day of the month in number format 

%m - stands for the month in number format 

%Y - stands for the year in the “YYYY” format. If we have the year value in two digits, we will 

use the “%y” instead of “%Y.” See an example below: 

 

dv1 <- as.Date("01/22/15",format='%m/%d/%y') 

print(dv1) 

Output: 

[1] "2015-01-22" 

 

 

When we have a month name instead of month number under the input value, we can use the 

%B operator under the format = argument while using the as.Date() function. 

#example-3 

dv2<-as.Date("15 April,2020",format='%d %B,%Y') 

print(dv2) 

Output: 

[1] "2020-04-15" 

 

Getting the Current Date and Time for System 

Using the Sys.Date(), Sys.time() Function 

 In R programming, if you use Sys.Date() function, it will give you the system date. 

You don’t need to add an argument inside the parentheses to this function. 

 There is again a function named Sys.timezone() that allows us to get the timezone 

based on the location at which the user is running the code on the system. 

 And finally, we have the Sys.time() function. Which, if used, will return the current 

date as well as the time of the system with the timezone details. 
#To get the Current Date and Time 



102  

Sys.Date()#Current system Date 

Output: 
[1] "2022-01-30" 

Sys.timezone() #Timezone of the system 

Output: 
[1] "Asia/Calcutta" 

Sys.time() #Current System Time 

Output: 

[1] "2022-01-30 17:04:11 IST" 

 

Using the lubridate Package 

Well, there is a package named lubridate, which has a function named now() that can give us 

the current date, current time, and the current timezone details in a single call (same as the 

Sys.time() function). 

 

#The lubridate package 

install.packages("lubridate") 

library(lubridate) 

now() 

Output: 

[1] "2022-01-30 17:11:37 IST" 


